Please wait a minute...
金属学报  2020, Vol. 56 Issue (9): 1195-1205    DOI: 10.11900/0412.1961.2020.00020
  本期目录 | 过刊浏览 |
热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响
和思亮1, 赵云松2, 鲁凡1, 张剑2, 李龙飞1(), 冯强1
1 北京科技大学新金属材料国家重点实验室 北京材料基因工程高精尖创新中心 北京 100083
2 中国航发北京航空材料研究院先进高温结构材料重点实验室 北京 100095
Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States
HE Siliang1, ZHAO Yunsong2, LU Fan1, ZHANG Jian2, LI Longfei1(), FENG Qiang1
1 Beijing Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
Siliang HE, Yunsong ZHAO, Fan LU, Jian ZHANG, Longfei LI, Qiang FENG. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. Acta Metall Sin, 2020, 56(9): 1195-1205.

全文: PDF(3597 KB)   HTML
摘要: 

以初始组织分别为铸态组织和固溶态组织的第二代镍基单晶高温合金为研究对象,通过进行1300 ℃、30 MPa、2 h+1300 ℃、100 MPa、3 h两阶段的热等静压处理,对比热等静压前后显微缺陷及微观组织的变化,并在980 ℃、250 MPa条件下进行高温持久性能实验,明确了热等静压处理对不同初始组织状态下镍基单晶合金组织状态及持久性能改善的影响机制。结果表明:固溶处理显著促进Re、W、Al、Ta等合金元素的扩散,降低铸态组织共晶面积分数但显著提高显微孔洞平均面积分数及平均尺寸。热等静压处理可以显著降低显微孔洞平均面积分数及平均尺寸且对固溶态组织的作用更为显著,但热等静压对共晶组织的消除作用不如固溶处理明显。固溶态组织经热等静压处理后,显微孔洞面积分数降低至0.005%;共晶组织基本消除;Re、W、Al、Ta等元素枝晶偏析程度显著缓解;其980 ℃、250 MPa高温持久寿命相比未经热等静压处理的标准热处理态合金提高了40%左右。对固溶态组织进行热等静压处理的工序安排有利于提高显微孔洞闭合作用,促进成分均匀化并显著提高合金高温持久寿命。

关键词 第二代镍基单晶高温合金热等静压显微孔洞共晶持久寿命    
Abstract

Due to the excellent high temperature comprehensive performance and cost effective, the second-generation nickel-based single crystal superalloy has been widely used in the high-pressure turbine blades of advanced aero-engines. Microdefects such as micropores and interdendritic eutectic are seriously harmful to the high temperature mechanical properties of nickel-based single crystal superalloys. Hot isostatic pressure (HIP) technology, which has been widely used in powder and casting superalloys, can effectively reduce the micropores, interdendritic eutectic and other structural defects formed in the turbine blades during manufacturing, and improve the service reliability of turbine blades. However, the effect of HIP process on the high temperature stress rupture life of nickel-based single crystal superalloys is still controversial, especially with regard to the initial microstructure state of the nickel-based single crystal superalloys, i.e. the as-cast microstructure state or the as-solid-solution state. In this work, a kind of second-generation nickel-based single crystal superalloy with as-cast state or as-solid-solution state was selected as the research object. Through two-stage heat/booster type heat treatment process, in combination with microdefects quantitative analysis, quantitative characterization of alloying element segregation and high temperature stress rupture tests at 980 ℃ and 250 MPa, the effects of HIP process on the microdefects and high temperature stress rupture life of the used superalloy with different initial microstructures were studied. The results indicated that the solid-solution treatment can significantly promote the diffusion of alloying elements, such as Re, W, Al, and Ta, reduce the area fraction of interdendritic eutectic, but significantly increase the average area fraction and size of micropores in the used alloy with as-cast state. While, HIP process can effectively reduce the average area fraction and size of microspores in the used alloy with as-cast state or as-solid-solution state, but cannot eliminate the interdendritic eutectic as remarkable as the solid-solution treatment. By HIP process of the used alloy with as-solid-solution state, the area fraction of micropores is reduced to 0.005%, the eutectic structure is basically eliminated, and the dendrite segregation of Re, W, Al, Ta and other elements is significantly alleviated, resulting in the higher stress ruputure life of the used alloy, about 40% over that of the used alloy with the standard heat treatment state. Performing HIP process on nickel-based single crystal superalloy alloy with as-solid-solution state is of benefit to the high temperature stress rupture life due to the reduction of microdefects and the homogenization of alloying elements, in comparison with performing HIP process directly on the alloy with as-cast sate.

Key wordssecond-generation nickel-based single crystal superalloy    hot isostatic pressing    micropore    eutectic structure    stress rupture life
收稿日期: 2020-01-15     
ZTFLH:  TG132.32  
基金资助:中国航发北京航空材料研究院合作项目(2017012311ZB)
作者简介: 和思亮,男,纳西族,1993年生,博士生
图1  实验用镍基单晶高温合金试棒显微孔洞及微观组织观察部位示意图
SpecimenStateHeat treatment process
ACAs-cast state-
ASAs-solid-solution stateAs-cast state+1290 ℃, 1 h+1300 ℃, 2 h+1315 ℃, 4 h, AC*
ACHAs-cast state+HIPAs-cast state+1300 ℃, 30 MPa, 2 h+1300 ℃, 100 MPa, 3 h
ASHAs-solid-solution state+HIPAs-solid-solution state+1300 ℃, 30 MPa, 2 h+1300 ℃, 100 MPa, 3 h
SHTSHTAs-solid-solution state+ageing treatment (1120 ℃, 4 h, AC*+870 ℃, 32 h, AC*)
ACHSAs-cast state+HIP+SHT*As-cast state+HIP+1315 ℃, 3 h, AC*+ageing treatment
ASHSAs-solid-solution state+HIP+SHT*As-solid-solution state+HIP+1315 ℃, 3 h, AC*+ageing treatment
表1  实验所涉及热处理制度
图2  实验所涉及的热处理工序示意图
图3  铸态及固溶态镍基单晶高温合金经热等静压处理前后显微孔洞的宏观分布及微观形貌(a1, a2) AC;(b1, b2) AS;(c1, c2) ACH;(d1, d2) ASH
图4  铸态及固溶态镍基单晶高温合金经热等静压处理前后显微孔洞的平均面积分数及平均直径
图5  铸态及固溶态镍基单晶高温合金经热等静压处理前后显微孔洞直径分布图
图6  铸态及固溶态镍基单晶高温合金经热等静压处理前后的枝晶间共晶组织(a) AC;(b) ACH;(c) AS;(d) ASH
图7  铸态及固溶态镍基单晶高温合金经过热等静压处理前后的枝晶偏析系数(ki)Color online
SpecimenReWAlNbMoCrCoTaNi
AC2.231.660.860.430.941.081.140.640.97
AS1.661.280.940.970.981.021.030.860.96
ACH1.751.410.940.851.001.051.050.810.97
ASH1.371.170.970.940.910.991.000.950.99
表2  铸态及固溶态镍基单晶高温合金经过热等静压处理前后的枝晶偏析系数
图8  不同状态下镍基单晶高温合金枝晶干核心区的典型γ/γ'两相微观组织(a) SHT;(b) ACHS;(c) ASHS
SpecimenVolume fraction of γ' / %Size of γ' / nm
SHT68.7±2.5410±110
ACHS66.1±2.3401±91
ASHS66.0±2.1407±123
表3  不同状态下镍基单晶高温合金枝晶干核心区γ'相体积分数及尺寸
图9  不同状态下镍基单晶高温合金在980 ℃、250 MPa条件下的持久寿命
图10  不同状态下镍基单晶合金枝晶间共晶组织及微孔在热等静压过程中的变化示意图
图11  镍基单晶高温合金980 ℃、250 MPa持久断裂后样品枝晶间区域2种典型的裂纹分布状态(a) the cracks initiate from the interface of eutectic and matrix;(b) the cracks initiate from the interface of carbide and matrix
[1] Zhao X B, Liu L, Yang C B, et al. Advance in research of casting defects of directionally solidified nickel-based single superalloys [J]. J. Mater. Eng., 2012, (1): 93
[1] (赵新宝, 刘 林, 杨初斌等. 镍基单晶高温合金凝固缺陷研究进展 [J]. 材料工程, 2012, (1): 93)
[2] Elliott A J, Pollock T M, Tin S, et al. Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment [J]. Metall. Mater. Trans., 2004, 35A: 3221
[3] Zhang J, Lou L H. Directional solidification assisted by liquid metal cooling [J]. J. Mater. Sci. Technol., 2007, 23: 289
[4] Chen R Z. Development status of single crystal superalloys [J]. J. Mater. Eng., 1995, (8): 3
[4] (陈荣章. 单晶高温合金发展现状 [J]. 材料工程, 1995, (8): 3)
[5] Ma W Y, Li S S, Qiao M, et al. Effect of heat treatment on microstructure and stress rupture life of Ni-base single crystal superalloy [J]. Chin. J. Nonferrous Met., 2006, 16: 937
doi: 10.1016/S1003-6326(06)60355-5
[5] (马文有, 李树索, 乔 敏等. 热处理对镍基单晶高温合金微观组织和高温持久性能的影响 [J]. 中国有色金属学报, 2006, 16: 937)
[6] Danninger H, Weiss B. The influence of defects on high cycle fatigue of metallic materials [J]. J. Mater. Process. Technol., 2003, 143-144: 179
[7] Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength [J]. Int. J. Fatigue, 1994, 16: 163
[8] Aldinger F. Materials by Powder Technology, PTM93 [M]. Obserusel, Germany: DGM Informationsgesellschaft, 1993: 247
[9] Guo H M, Zhao Y S, Zheng S, et al. Effect of hot-isostatic pressing on microstructure and mechanical properties of second generation single crystal superalloy DD6 [J]. J. Mater. Eng., 2016, 44(10): 60
[9] (郭会明, 赵云松, 郑 帅等. 热等静压对第二代单晶高温合金DD6显微组织和力学性能的影响 [J]. 材料工程, 2016, 44(10): 60)
[10] Atkinson H V, Davies S. Fundamental aspects of hot isostatic pressing: An overview [J]. Metall. Mater. Trans., 2000, 31A: 2981
[11] Bocanegra-Bernal M H. Hot isostatic pressing (HIP) technology and its applications to metals and ceramics [J]. J. Mater. Sci., 2004, 39: 6399
[12] Ning Y Q, Yao Z K, Fu M W, et al. Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096: I. Microstructure and mechanism [J]. Mater. Sci. Eng., 2011, A528: 8065
[13] Galante R, Figueiredo-Pina C G, Serro A P. Additive manufacturing of ceramics for dental applications: A review [J]. Dent. Mater., 2019, 35: 825
pmid: 30948230
[14] Wei C N, Bor H Y, Chang L. Effect of hot isostatic pressing on microstructure and mechanical properties of CM-681LC nickel-base superalloy using microcast [J]. Mater. Trans., 2008, 49: 193
[15] Zhao X M, Lin X, Chen J, et al. The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming [J]. Mater. Sci. Eng., 2009, A504: 129
[16] Cao L M, Liu L J, Chen J Y, et al. Effect of hot isostatic pressing temperature on the microstructure of a third generation single crystal superalloy DD10 [J]. J. Mater. Eng., 2013, (6): 1
[16] (曹腊梅, 刘丽君, 陈晶阳等. 热等静压温度对第三代单晶高温合金DD10组织的影响 [J]. 材料工程, 2013, (6): 1)
[17] Roncery L M, Lopez-Galilea I, Ruttert B, et al. Influence of temperature, pressure, and cooling rate during hot isostatic pressing on the microstructure of an SX Ni-base superalloy [J]. Mater. Des., 2016, 97: 544
[18] Luo Y S, Guo H M, Zhao Y S, et al. Effect of hot isostatic pressing on high-temperature high cycle fatigue properties of a second generation single crystal superalloy DD6 [J]. Mater. Mech. Eng., 2016, 40(7): 51
[18] (骆宇时, 郭会明, 赵云松等. 热等静压对第二代DD6单晶高温合金高温高周疲劳性能的影响 [J]. 机械工程材料, 2016, 40(7): 51)
[19] Reed R C, Cox D C, Rae C M F. Damage accumulation during creep deformation of a single crystal superalloy at 1150 ℃ [J]. Mater. Sci. Eng., 2007, A448: 88
[20] Chang J C, Choi C, Kim J C, et al. Development of microstructure and mechanical properties of a Ni-base single-crystal superalloy by hot-isostatic pressing [J]. J. Mater. Eng. Perform., 2003, 12: 420
[21] Shi Q Y, Li X H, Zheng Y R, et al. Formation of solidification and homogenisation micropores in two single crystal superalloys produced by HRS and LMC processes [J]. Acta Metall. Sin., 2012, 48: 1237
doi: 10.3724/SP.J.1037.2012.00172
[21] (石倩颖, 李相辉, 郑运荣等. HRS和LMC工艺制备的两种镍基单晶高温合金铸态及固溶微孔的形成 [J]. 金属学报, 2012, 48: 1237)
doi: 10.3724/SP.J.1037.2012.00172
[22] Bokstein B S, Epishin A I, Link T, et al. Model for the porosity growth in single-crystal nickel-base superalloys during homogenization [J]. Scr. Mater., 2007, 57: 801
[23] Li X W, Wang L, Dong J S, et al. Evolution of micro-pores in a single-crystal nickel-based superalloy during solution heat treatment [J]. Metall. Mater. Trans., 2017, 48A: 2682
[24] Toloraya V N, Svetlov I L. Effect of conditions of directed crystallization and heat treatment on the porosity of single crystals of high-temperature nickel alloys [J]. Russ. Metall., 1991, 5: 70
[25] Epishin A, Fedelich B, Link T, et al. Pore annihilation in a single-crystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling [J]. Mater. Sci. Eng., 2013, A586: 342
[26] Yan B C, Zhang J, Lou L H. Effect of boron additions on the microstructure and transverse properties of a directionally solidified superalloy [J]. Mater. Sci. Eng., 2008, A474: 39
[27] Schmidt R, Feller-Kniepmeier M. Effect of heat treatments on phase chemistry of the nickel-base superalloy SRR 99 [J]. Metall. Trans., 1992, 23A: 745
[28] Wilson B C, Cutler E R, Fuchs G E. Effect of solidification parameters on the microstructures and properties of CMSX-10 [J]. Mater. Sci. Eng., 2008, A479: 356
[29] Yu Z, Rao S X, Zheng Z, et al. Interaction of hot isostatic pressing temperature and hydrostatic pressure on the healing of creep cavities in a nickel-based superalloy [J]. Mater. Des., 2013, 49: 25
doi: 10.1016/j.matdes.2013.01.055
[30] Zhou Y, Zhang Z, Zhong Q P, et al. Model for healing of creep cavities in nickel-based superalloys under hot isostatic pressing [J]. Comput. Mater. Sci., 2012, 65: 320
[1] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[2] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[3] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[4] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[5] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[6] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.
[7] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[8] 赵雷, 王辉, 杨丽霞, 陈学斌, 郎润秋, 贺林峰, 陈东风, 王海舟. Fe-Co-Ni系组合合金热等静压高通量制备方法初探[J]. 金属学报, 2021, 57(12): 1627-1636.
[9] 许军锋, 张宝东, Peter K Galenko. 含有化合物相的共晶转变理论模型[J]. 金属学报, 2021, 57(10): 1320-1332.
[10] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[11] 包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
[12] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[13] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[14] 张建锋,蓝青,郭瑞臻,乐启炽. 交流磁场对过共晶Al-Fe合金初生相的影响[J]. 金属学报, 2019, 55(11): 1388-1394.
[15] 王宝刚, 易红亮, 王国栋, 骆智超, 黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构[J]. 金属学报, 2019, 55(1): 133-140.