Please wait a minute...
金属学报  2019, Vol. 55 Issue (9): 1195-1203    DOI: 10.11900/0412.1961.2019.00110
  研究论文 本期目录 | 过刊浏览 |
第二代单晶高温合金高周疲劳行为研究
李嘉荣(),谢洪吉,韩梅,刘世忠
北京航空材料研究院先进高温结构材料重点实验室 北京 100095
High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy
LI Jiarong(),XIE Hongji,HAN Mei,LIU Shizhong
Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(29783 KB)   HTML
摘要: 

研究了[001]取向第二代单晶高温合金(DD6和DD5)在760和980 ℃条件下的高周疲劳行为,并对比分析了DD6与DD5合金的高周疲劳性能。结果表明:DD6合金高周疲劳性能优异,760和980 ℃条件下107 cyc疲劳极限分别为414和403 MPa;2种合金的高周疲劳断裂机制均为类解理断裂;应力幅较低时,位错以弓出和交滑移的方式在γ基体通道中滑移;应力幅升高时,出现位错对剪切γ'相。DD5合金C含量是DD6合金的8倍,使其碳化物含量远高于DD6合金,且二者碳化物形态存在显著差异;在DD5合金疲劳断裂过程中,碳化物既是二次裂纹的萌生位置,又是裂纹的扩展通道,显著加快了疲劳裂纹扩展速率,明显降低了合金的高周疲劳性能。

关键词 第二代单晶高温合金高周疲劳行为碳化物    
Abstract

Ni-based single crystal superalloys have excellent comprehensive properties and become the preferred material for advanced aeroengine turbine blades. DD6 alloy which has been widely used in China and DD5 alloy are the second generation single crystal superalloy, and their chemical compositions and mechanical properties are quite different. In the past few decades, high cycle fatigue failure has become one of the main causes of turbine blade failure. More and more attention has been paid to the high cycle fatigue properties of single crystal superalloys. Therefore, it is important to study the high cycle fatigue behavior of single crystal superalloys, especially the second generation single crystal superalloys. In order to compare high cycle fatigue performance, two typical second generation single crystal (SC) superalloys DD6 and DD5 with [001] orientation were subjected to high cycle fatigue (HCF) loading at temperatures of 760 and 980 ℃ in ambient atmosphere. The results demonstrate that the fatigue limit of DD6 alloy is 414 and 403 MPa at temperatures of 760 and 980 ℃, respectively. DD6 alloy exhibits an excellent HCF performance under a condition of stress ratio of -1 regardless of medium or high temperature. Analysis on fracture surfaces of DD6 and DD5 alloys at 760 and 980 ℃ demonstrate that quasi-cleavage mode is observed. In addition, different types of dislocation structures were developed during the cyclic deformation. When the stress amplitude is low, dislocation movement in the γ matrix by bowing and cross slip is the main deformation mechanism and shearing γ' particles by dislocation pairs occurs occasionally under high stress level. The analysis shows that the carbon content of DD5 alloy is eight times than that of DD6 alloy, which makes the carbide content much higher than DD6 alloy, and there are significant differences in carbide morphology. In the process of fatigue fracture, carbide plays two roles of secondary crack initiation position and crack propagation channel, which greatly accelerates the fatigue crack growth rate. In the end, the fatigue resistance of DD5 alloy is reduced.

Key wordssecond generation single crystal superalloy    high cycle fatigue behavior    carbide
收稿日期: 2019-04-10     
ZTFLH:  TG132.3  
通讯作者: 李嘉荣     E-mail: jrli126@126.com
Corresponding author: Jiarong LI     E-mail: jrli126@126.com
作者简介: 李嘉荣,男,1962年生,研究员,博士

引用本文:

李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
Jiarong LI, Hongji XIE, Mei HAN, Shizhong LIU. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy. Acta Metall Sin, 2019, 55(9): 1195-1203.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00110      或      https://www.ams.org.cn/CN/Y2019/V55/I9/1195

AlloyCCrCoMoWTaReNbAlHfBNi
DD60.0064.309.002.008.007.502.000.55.60.10-Bal.
DD50.0497.057.621.565.026.582.93-6.20.17<0.01Bal.
表1  DD6和DD5合金的化学成分
图1  光滑疲劳试样尺寸
图2  760和980 ℃条件下DD6与DD5合金高周疲劳性能对比
图3  760和980 ℃条件下DD6与DD5合金疲劳断口宏观形貌的SEM像
图4  760和980 ℃条件下DD6合金高周疲劳断口微观形貌的SEM像
图5  760 ℃条件下DD6和DD5合金疲劳断口附近纵剖面显微组织的SEM像
图6  760 ℃条件下DD6与DD5合金高周疲劳断口附近位错组态的TEM像
图7  DD6与DD5合金碳化物形貌的SEM像
图8  760和980 ℃条件下DD6与DD5合金的疲劳裂纹萌生
图9  760和980 ℃条件下DD5合金疲劳断口纵剖面显微组织的SEM像
[1] SchafrikR E, WalstonS. Challenges for high temperature materials in the new millennium [A].Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 3
[2] CetelA D, DuhlD N. Second-generation nickel-base single crystal superalloy [A].Superalloys 1988 [C]. Warrendale, PA: TMS, 1988: 235
[3] WukusickC S, L JrBuchakjian. Property-balanced nickel-base superalloys for producing single crystal articles [P]. US Pat, US6074602, 1994
[4] HarrisK, EricksonG L. Single crystal alloy technology [P]. US Pat, US4643782, 1987
[5] LiJ R, ZhongZ G, TangD Z, , et al. A low-cost second generation single crystal superalloy DD6 [A].Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 777
[6] WrightP K, JainM, CameronD. High cycle fatigue in a single crystal superalloy: Time dependence at elevated temperature [A].Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 657
[7] CowlesB A. High cycle fatigue in aircraft gas turbines-an industry perspective [J]. Int. J. Fracture, 1996, 80: 147
[8] Luká?P, KunzL, SvobodaM. High cycle fatigue of superalloy single crystals at high mean stress [J]. Mater. Sci. Eng., 2004, A387-389: 505
[9] FritzemeierL G. The influence of high thermal gradient casting, hot isostatic pressing and alternate heat treatment on the structure and properties of a single crystal nickel base superalloy [A].Superalloys 1988 [C]. Warrendale, PA: TMS, 1988: 265
[10] LammM, SingerR F. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483 [J]. Metall. Mater. Trans., 2007, 38A: 1177
[11] BrundidgeC L, PollockT M. Processing to fatigue properties: Benefits of high gradient casting for single crystal airfoils [A].Superalloys 2012 [C]. Warrendale, PA: TMS, 2012: 379
[12] SunY L, YuJ J, WangZ J, , et al. Rotary bending high cycle fatigue behavior of single crystal superalloy DD499 in <111> orientation [J]. Rare Met. Mater. Eng., 2011, 40: 239
[12] 孙岳来, 于金江, 王振江等. <111>取向DD499合金旋转弯曲高周疲劳性能的研究 [J]. 稀有金属材料与工程, 2011, 40: 239
[13] YuJ J, YangY Y, SunX F, , et al. Rotary bending high-cycle fatigue behavior of DD32 single crystal superalloy containing rhenium [J]. J. Mater. Sci., 2012, 47: 4805
[14] HarrisK, WahlJ B. Improved single crystal superalloys, CMSX-4?(SLS)[La+Y] and CMSX-486? [A].Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 45
[15] SunY, LiuJ D, LiuZ M, , et al. Microstructure evolution and mechanical properties of DD5 single crystal superalloy joint brazed by Co-based filler alloy [J]. Acta Metall. Sin., 2013, 49: 1581
[15] 孙 元, 刘纪德, 刘忠明等. 钴基钎料钎焊DD5单晶高温合金的接头微观组织演变与力学性能研究 [J]. 金属学报, 2013, 49: 1581
[16] CuiR J, HuangZ H. Microstructual evolution and stability of second generation single crystal nickel-based superalloy DD5 [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 2079
[17] LiuL R, JinT, ZhaoN R, , et al. Effect of carbon additions on the microstructure in a Ni-base single crystal superalloy [J]. Mater. Lett., 2004, 58: 2290
[18] LiuL R, JinT, ZhaoN R, , et al. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy [J]. Mater. Sci. Eng., 2003, A361: 191
[19] WangL, WangD, LiuT, , et al. Effect of minor carbon additions on the high-temperature creep behavior of a single-crystal nickel-based superalloy [J]. Mater. Charact., 2015, 104: 8l
[20] ZhouY Z, VolekA. Effect of carbon additions on hot tearing of a second generation nickel-base superalloy [J]. Mater. Sci. Eng., 2008, A479: 324
[21] YuJ J, SunX F, ZhaoN R, , et al. Effect of carbon on microstructure and mechanical properties of DD99 single crystal superalloy [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 1973
[22] YuZ H, LiuL. Effect of C on the rupture properties of single crystal superalloys [J]. Acta Metall. Sin., 2014, 50: 854
[22] 余竹焕, 刘 林. C对单晶高温合金持久性能的影响 [J]. 金属学报, 2014, 50: 854
[23] LiJ R, ZhaoJ Q, LiuS Z, , et al. Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6 [A].Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 443
[24] HanM, LuoY S. Phase characteristics of DD3 single crystal superalloy [J]. J. Aeronaut. Mater., 2008, 28(4): 22
[24] 韩 梅, 骆宇时. 单晶高温合金DD3的相特征 [J]. 航空材料学报, 2008, 28(4): 22)
[25] LiuE Z, ZhengZ, TongJ, , et al. Study on high cycle fatigue properties of DZ468 superalloy [J]. Acta Metall. Sin., 2010, 46: 708
[25] 刘恩泽, 郑 志, 佟 健等. DZ468合金高周疲劳性能研究 [J]. 金属学报, 2010, 46: 708
[26] ZhuX, ShyamA, JonesJ W, , et al. Effects of microstructure and temperature on fatigue behavior of E319-T7 cast aluminum alloy in very long life cycles [J]. Int. J. Fatigue, 2006, 28: 1566
[27] YiJ Z, TorbetC J, FengQ, , et al. Ultrasonic fatigue of a single crystal Ni-base superalloy at 1000 ℃ [J]. Mater. Sci. Eng., 2007, A443: 142
[28] LiuY, YuJ J, XuY, , et al. High cycle fatigue behavior of a single crystal superalloy at elevated temperatures [J]. Mater. Sci. Eng., 2007, A454-455: 357
[29] MüllerS, R?slerJ, SommerC, , et al. The influence of load ratio, temperature, orientation and hold time on fatigue crack growth of CMSX-4 [A].Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 347
[30] LiJ R, LiuS Z, WangK G, , et al. Tensile behavior of second generation single crystal superalloy DD6 [J]. J. Iron Steel Res., 2003, 15(7): 272
[30] 李嘉荣, 刘世忠, 王开国等. 第二代单晶高温合金DD6的拉伸性能 [J]. 钢铁研究学报, 2003, 15(7): 272)
[31] YuJ, LiJ R, HanM, , et al. Anisotropy of stress rupture properties of DD6 single crystal superalloy at 980 ℃/250 MPa near [001] orientation [J]. J. Mater. Eng., 2012, (4): 1
[31] 喻 健, 李嘉荣, 韩 梅等. 近[001]取向DD6单晶高温合金980 ℃/250 MPa持久性能各向异性研究 [J]. 材料工程, 2012, (4): 1)
[32] MacLachlanD W, KnowlesD M. Creep-behavior modeling of the single-crystal superalloy CMSX-4 [J]. Metall. Mater. Trans., 2000, 31A: 1401
[33] ShiZ X, LiJ R, LiuS Z, , et al. Creep property of a single crystal superalloy at high temperature [J]. Foundry, 2014, 63: 541
[33] 史振学, 李嘉荣, 刘世忠等. 一种单晶高温合金的高温蠕变性能 [J]. 铸造, 2014, 63: 541
[34] ZhouH, RoY, HaradaH, , et al. Deformation microstructures after low-cycle fatigue in fourth-generation Ni-base SC superalloy TMS-138 [J]. Mater. Sci. Eng., 2004, A381: 20
[35] SassV, Feller-KniepmeierM. Orientation dependence of dislocation structures and deformation mechanisms in creep deformed CMSX-4 single crystals [J]. Mater. Sci. Eng., 1998, A245: 19
[36] ReedR C. Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 1
[37] TianS G, DingX, GuoZ G, , et al. Damage and fracture mechanism of a nickel-based single crystal superalloy during creep at moderate temperature [J]. Mater. Sci. Eng., 2014, A594: 7
[1] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[2] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[3] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[4] 张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松. 碳化物/氧化物弥散强化钨基材料研究进展[J]. 金属学报, 2018, 54(6): 831-843.
[5] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[6] 刘锡荣, 张凯, 夏爽, 刘文庆, 李慧. 690合金中三晶交界及晶界类型对碳化物析出形貌的影响[J]. 金属学报, 2018, 54(3): 404-410.
[7] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[8] 陈波, 郝宪朝, 马颖澈, 查向东, 刘奎. 添加N对Inconel 690合金显微组织和晶界微区成分的影响[J]. 金属学报, 2017, 53(8): 983-990.
[9] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[10] 马德新, 王富, 温序晖, 孙德建, 刘林. CM247LC单晶高温合金中MC碳化物对γ/γ′共晶反应的影响[J]. 金属学报, 2017, 53(12): 1603-1610.
[11] 马颖澈,李硕,郝宪朝,查向东,高明,刘奎. 2种N含量不同的690合金中晶界碳化物及晶界Cr贫化研究*[J]. 金属学报, 2016, 52(8): 980-986.
[12] 张思倩,王栋,王迪,彭建强. Re对一种定向凝固镍基高温合金微观组织的影响*[J]. 金属学报, 2016, 52(7): 851-858.
[13] 张正延,孙新军,雍岐龙,李昭东,王振强,王国栋. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为*[J]. 金属学报, 2016, 52(4): 410-418.
[14] 丁贤飞,刘东方,郑运荣,冯强. B微合金化对HK40合金铸造疏松的影响[J]. 金属学报, 2015, 51(9): 1121-1128.
[15] 张义文,胡本芙. 镍基粉末高温合金中微量元素Hf的作用*[J]. 金属学报, 2015, 51(8): 967-975.