|
|
锻造-增材复合制造Ti-6Al-4V合金结合区显微组织及力学性能 |
马健凯, 李俊杰( ), 王志军, 王俞鉴, 王锦程( ) |
西北工业大学 凝固技术国家重点实验室 西安 710072 |
|
Bonding Zone Microstructure and Mechanical Properties of Forging-Additive Hybrid Manufactured Ti-6Al-4V Alloy |
MA Jiankai, LI Junjie( ), WANG Zhijun, WANG Yujian, WANG Jincheng( ) |
State Key Laboratory of Solidification Technology, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
马健凯, 李俊杰, 王志军, 王俞鉴, 王锦程. 锻造-增材复合制造Ti-6Al-4V合金结合区显微组织及力学性能[J]. 金属学报, 2021, 57(10): 1246-1257.
Jiankai MA,
Junjie LI,
Zhijun WANG,
Yujian WANG,
Jincheng WANG.
Bonding Zone Microstructure and Mechanical Properties of Forging-Additive Hybrid Manufactured Ti-6Al-4V Alloy[J]. Acta Metall Sin, 2021, 57(10): 1246-1257.
1 |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
|
2 |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
|
3 |
Gorsse S, Hutchinson C, Goune M, et al. Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys [J]. Sci. Technol. Adv. Mater., 2017, 18: 584
|
4 |
DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
|
5 |
Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
|
6 |
Huber F, Papke T, Kerkien M, et al. Customized exposure strategies for manufacturing hybrid parts by combining laser beam melting and sheet metal forming [J]. J. Laser Appl., 2019, 31: 022318
|
7 |
Schneider J, Seidel A, Gumpinger J, et al. Advanced manufacturing approach via the combination of selective laser melting and laser metal deposition [J]. J. Laser Appl., 2019, 31: 022317
|
8 |
Zhu Y Y, Li J, Tian X J, et al. Microstructure and mechanical properties of hybrid fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser additive manufacturing [J]. Mater. Sci. Eng., 2014, A607: 427
|
9 |
Mohammadi M, Dryden J R. Influence of the spatial variation of Poisson's ratio upon the elastic field in nonhomogeneous axisymmetric bodies [J]. Int. J. Solids Struct., 2009, 46: 788
|
10 |
Hadadzadeh A, Amirkhiz B S, Shakerin S, et al. Microstructural investigation and mechanical behavior of a two-material component fabricated through selective laser melting of AlSi10Mg on an Al-Cu-Ni-Fe-Mg cast alloy substrate [J]. Addit. Manuf., 2020, 31: 100937
|
11 |
Azizi H, Ghiaasiaan R, Prager R, et al. Metallurgical and mechanical assessment of hybrid additively-manufactured maraging tool steels via selective laser melting [J]. Addit. Manuf., 2019, 27: 389
|
12 |
Yang F Q. Diffusion-induced stress in inhomogeneous materials: Concentration-dependent elastic modulus [J]. Sci. China Phys. Mech. Astron., 2012, 55: 955
|
13 |
Wang Y D, Tang H B, Fang Y L, et al. Microstructure and mechanical properties of hybrid fabricated 1Cr12Ni2WMoVNb steel by laser melting deposition [J]. Chin. J. Aeronaut., 2013, 26: 481
|
14 |
Ghoncheh M H, Sanjari M, Cyr E, et al. On the solidification characteristics, deformation, and functionally graded interfaces in additively manufactured hybrid aluminum alloys [J]. Int. J. Plast., 2020, 133: 102840
|
15 |
Sarswat P K, Sarkar S, Murali A, et al. Additive manufactured new hybrid high entropy alloys derived from the AlCoFeNiSmTiVZr system [J]. Appl. Surf. Sci., 2019, 476: 242
|
16 |
Zhang Q, Chen J, Guo P F, et al. Texture and microstructure characterization in laser additive manufactured Ti-6Al-2Zr-2Sn-3Mo-1.5Cr-2Nb titanium alloy [J]. Mater. Des., 2015, 88: 550
|
17 |
Thijs L, Verhaeghe F, Craeghs T. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V [J]. Acta Mater., 2010, 58: 3303
|
18 |
Zhu Y Y, Tian X J, Li J. Microstructure evolution and layer bands of laser melting deposition Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy [J]. J. Alloys Compd., 2014, 616: 468
|
19 |
Sridharan N, Chaudhary A, Nandwana P, et al. Texture evolution during laser direct metal deposition of Ti-6Al-4V [J]. JOM, 2016, 68: 772
|
20 |
Zhang S L, Ma Y J, Huang S S, et al. Temperature-gradient induced microstructure evolution in heat-affected zone of electron beam welded Ti-6Al-4V titanium alloy [J]. J. Mater. Sci. Technol., 2019, 35: 1681
|
21 |
Wang S Q, Li W Y, Zhou Y, et al. Tensile and fatigue behavior of electron beam welded dissimilar joints of Ti-6Al-4V and IMI834 titanium alloys [J]. Mater. Sci. Eng., 2016, A649: 146
|
22 |
Li C, Gu D D, Shen Y F, et al. Densification and microstructure of TiCx /Ti nanocomposites prepared by selective laser melting [J]. Chin. J. Nonferrous Met., 2011, 21: 1554
|
22 |
李 闯, 顾冬冬, 沈以赴等. 选区激光熔化制备TiCx /Ti纳米复合材料的致密化及显微组织 [J]. 中国有色金属学报, 2011, 21: 1554
|
23 |
Ren Y M, Lin X, Huang W D. Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy [J]. Rare Met. Mater. Eng., 2017, 46: 3160
|
23 |
任永明, 林 鑫, 黄卫东. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展 [J]. 稀有金属材料与工程, 2017, 46: 3160
|
24 |
Pederson R, Niklasson F, Skystedt F, et al. Microstructure and mechanical properties of friction- and electron-beam welded Ti-6Al-4V and Ti-6Al-2Sn-4Zr-6Mo [J]. Mater. Sci. Eng., 2012, A552: 555
|
25 |
Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α+β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
|
25 |
黄森森, 马英杰, 张仕林等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
|
26 |
Sun Y Y, Wang P, Lu S L, et al. Laser welding of electron beam melted Ti-6Al-4V to wrought Ti-6Al-4V: Effect of welding angle on microstructure and mechanical properties [J]. J. Alloys Compd., 2019, 782: 967
|
27 |
Lu W, Shi Y W, Lei Y P, et al. Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy [J]. Mater. Des., 2012, 34: 509
|
28 |
Stanford N, Bate P S. Crystallographic variant selection in α-β brass [J]. Acta Mater., 2005, 53: 859
|
29 |
Bhattacharyya D, Viswanathan G B, Fraser H L. Crystallographic and morphological relationships between β phase and the Widmanstätten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy [J]. Acta Mater., 2007, 55: 6765
|
30 |
He D, Zhu J C, Zaefferer S, et al. Influences of deformation strain, strain rate and cooling rate on the Burgers orientation relationship and variants morphology during β→α phase transformation in a near α titanium alloy [J]. Mater. Sci. Eng., 2012, A549: 20
|
31 |
Shi R, Ma N, Wang Y. Predicting equilibrium shape of precipitates as function of coherency state [J]. Acta Mater., 2012, 60: 4172
|
32 |
Liu Y, Dong D Y, Wang L, et al. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading [J]. Mater. Sci. Eng., 2015, A627: 296
|
33 |
Xu W, Brandt M, Sun S J, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Mater., 2015, 85: 74
|
34 |
Wang J, Lin X, Li J Q, et al. Effects of deposition strategies on macro/microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J]. Mater. Sci. Eng., 2019, A754: 735
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|