Please wait a minute...
金属学报  2021, Vol. 57 Issue (10): 1246-1257    DOI: 10.11900/0412.1961.2020.00416
  研究论文 本期目录 | 过刊浏览 |
锻造-增材复合制造Ti-6Al-4V合金结合区显微组织及力学性能
马健凯, 李俊杰(), 王志军, 王俞鉴, 王锦程()
西北工业大学 凝固技术国家重点实验室 西安 710072
Bonding Zone Microstructure and Mechanical Properties of Forging-Additive Hybrid Manufactured Ti-6Al-4V Alloy
MA Jiankai, LI Junjie(), WANG Zhijun, WANG Yujian, WANG Jincheng()
State Key Laboratory of Solidification Technology, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

马健凯, 李俊杰, 王志军, 王俞鉴, 王锦程. 锻造-增材复合制造Ti-6Al-4V合金结合区显微组织及力学性能[J]. 金属学报, 2021, 57(10): 1246-1257.
Jiankai MA, Junjie LI, Zhijun WANG, Yujian WANG, Jincheng WANG. Bonding Zone Microstructure and Mechanical Properties of Forging-Additive Hybrid Manufactured Ti-6Al-4V Alloy[J]. Acta Metall Sin, 2021, 57(10): 1246-1257.

全文: PDF(4965 KB)   HTML
摘要: 

在Ti-6Al-4V合金锻造成形双态组织基材上采用激光立体成形方法(送粉式激光增材制造)沉积块体试样,研究了不同线能量密度输入下基材与增材结合区的微观组织特征及形成机制。结果表明,结合区内不同高度部位由于热源影响程度存在差异,形成了从下到上的非均匀组织。其中下部区域由于峰值温度较低,仍保持初始双态组织形貌,但发生一定粗化;中部区域随着温度升高以及保温时间延长,形成等轴α相、层片α相及大量次生α相的混合组织;而上方靠近增材区的峰值温度超过β相转变温度,完全转变为由层片α相形成的魏氏体组织,并伴随着由于元素扩散不充分而形成的阴影结构。对包含基材区和增材区的结合试样进行拉伸测试发现,在设定的能量密度范围内,断裂位置均远离结合区,表明增材区与基材区结合良好,结合区强度超过基材区及增材区强度。此外,对比不同能量密度复合制造Ti-6Al-4V试样的拉伸测试结果发现,线能量密度为100 J/mm时,结合区以及增材区α相特征尺寸较小,复合制造试样的屈服强度和抗拉强度最大。随线能量密度的增大,复合制造试样屈服强度和抗拉强度均减小,而延伸率增加。

关键词 复合制造线能量密度结合区显微组织力学性能    
Abstract

The forging-additive hybrid manufacturing technology combines the advantages of traditional manufacturing in terms of efficiency and cost with the refined, flexible, and rapid prototyping characteristics of additive manufacturing. It provides an effective solution for efficient forming of large components. The bonding zone between the wrought-substrate and laser-deposition zones is the fundamental key in the properties of the entire component. In this study, laser solid forming (a powder-feeding laser additive manufacturing technology) was used to deposit bulk samples on a wrought Ti-6Al-4V substrate that contained a bi-modal microstructure. The microstructure in the bonding zone between the substrate and laser-deposition zones under different inputs of linear energy density were studied. The results show that the microstructure in the bonding zone varied from the bottom to the top due to the different influence extents of the heat source. Because of the lower peak temperature, the bi-modal microstructure at the bottom of the bonding zone still retained the initial morphology but contained a certain degree of coarsening. A mixed structure that contained equiaxed α, lamellar α, and a large number of secondary α in the middle of the bonding zone occurred with the increase in temperature and prolonging of the holding time. Meanwhile, the peak temperature of the upper part exceeded the β-phase transition temperature, which exhibited a Widmanstätten structure consisting of lamellar α and the so-called ghost area that was formed due to insufficient element diffusion. In the tensile tests, the fracture position of all bonding samples fabricated with various linear energy densities were very far from the bonding zone, indicating a better strength of the bonding zone than that of the wrought substrate and laser-deposition part. In addition, when the linear energy density was 100 J/mm, the yield and tensile strengths of the composite fabricated sample were larger than that with linear energy densities of 133 and 200 J/mm because the feature size of the α phase in the bonding and additive zones was smaller. Both the yield and tensile strengths of the hybrid fabricated specimen decreased with the increase in the linear energy density, whereas the elongation increased.

Key wordshybrid manufacturing    line energy density    bonding zone    microstructure    mechanical property
收稿日期: 2020-10-23     
ZTFLH:  TG146  
基金资助:国家重点研发计划项目(2018YFB1106003);国家自然科学基金项目(51874245)
作者简介: 马健凯,男,1988年生,博士生
AlloyHONCSiFeVAlTi
Substrate0.00190.1400.0100.0200.0300.034.26.36Bal.
Powder0.00300.0870.0020.0080.0280.034.26.37Bal.
表 1  锻造态Ti-6Al-4V基材与Ti-6Al-4V合金粉末的化学成分 (mass fraction / %)
图1  锻造-增材复合制造实验示意图、复合制造试件、结合区拉伸试样取样位置和拉伸试样尺寸
Sample

P

W

v

mm·s-1

d

mm

R0

%

Vf

g·min-1

ΔZ

mm

El

J·mm-1

115001555012-130.7100
220001555012-130.7133
320001055012-130.7200
表2  锻造-增材复合制造工艺参数
图2  不同线能量密度下锻造-增材复合制造Ti-6Al-4V合金的结合部位及基材的显微组织
图3  不同线能量密度下锻造-增材复合制造Ti-6Al-4V合金增材区的微观组织及其特征尺寸
图4  不同线能量密度下锻造-增材复合制造Ti-6Al-4V合金结合区的显微组织(a1, a2, a3) 100 J/mm (b1, b2, b3) 133 J/mm (c1, c2, c3) 200 J/mm
图5  不同线能量密度下锻造-增材复合制造Ti-6Al-4V合金结合区中不同组织的尺寸(a) width of lamellar α phase in bottom-BZ(b) diameter of equiaxed α phase in bottom-BZ(c) width of lamellar α phase in up-BZ(d) diameter of equiaxed β phase in up-BZ
图6  不同线能量密度下锻造-增材复合制造Ti-6Al-4V合金结合区中部的显微组织
图7  不同线能量密度下锻造-增材复合制造Ti-6Al-4V合金结合区上部的显微组织以及阴影结构的元素含量变化
图8  锻件-增材复合制造Ti-6Al-4V试样增材区的EBSD测试结果以及A晶粒的散点极图
图9  增材区中α相和β相的TEM像以及电子衍射斑点
图10  不同线能量密度下锻造-增材复合制造Ti-6Al-4V合金结合区试样的应力-应变曲线
SampleUTS / MPaYS / MPaEL / %
1954.64 ± 0.4861.74 ± 3.212.48 ± 2.25
2918.00 ± 8.1815.60 ± 5.512.80 ± 0.24
3915.86 ± 10.5828.23 ± 7.815.43 ± 0.45
表3  不同线能量密度下锻造-增材复合制造Ti-6Al-4V合金的力学性能
图11  不同线能量密度下结合区锻造-增材复合制造Ti-6Al-4V合金试样的断裂位置
图12  不同线能量密度下锻造-增材复合制造Ti-6Al-4V合金结合区的断口形貌
1 Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
2 Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
3 Gorsse S, Hutchinson C, Goune M, et al. Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys [J]. Sci. Technol. Adv. Mater., 2017, 18: 584
4 DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
5 Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
6 Huber F, Papke T, Kerkien M, et al. Customized exposure strategies for manufacturing hybrid parts by combining laser beam melting and sheet metal forming [J]. J. Laser Appl., 2019, 31: 022318
7 Schneider J, Seidel A, Gumpinger J, et al. Advanced manufacturing approach via the combination of selective laser melting and laser metal deposition [J]. J. Laser Appl., 2019, 31: 022317
8 Zhu Y Y, Li J, Tian X J, et al. Microstructure and mechanical properties of hybrid fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser additive manufacturing [J]. Mater. Sci. Eng., 2014, A607: 427
9 Mohammadi M, Dryden J R. Influence of the spatial variation of Poisson's ratio upon the elastic field in nonhomogeneous axisymmetric bodies [J]. Int. J. Solids Struct., 2009, 46: 788
10 Hadadzadeh A, Amirkhiz B S, Shakerin S, et al. Microstructural investigation and mechanical behavior of a two-material component fabricated through selective laser melting of AlSi10Mg on an Al-Cu-Ni-Fe-Mg cast alloy substrate [J]. Addit. Manuf., 2020, 31: 100937
11 Azizi H, Ghiaasiaan R, Prager R, et al. Metallurgical and mechanical assessment of hybrid additively-manufactured maraging tool steels via selective laser melting [J]. Addit. Manuf., 2019, 27: 389
12 Yang F Q. Diffusion-induced stress in inhomogeneous materials: Concentration-dependent elastic modulus [J]. Sci. China Phys. Mech. Astron., 2012, 55: 955
13 Wang Y D, Tang H B, Fang Y L, et al. Microstructure and mechanical properties of hybrid fabricated 1Cr12Ni2WMoVNb steel by laser melting deposition [J]. Chin. J. Aeronaut., 2013, 26: 481
14 Ghoncheh M H, Sanjari M, Cyr E, et al. On the solidification characteristics, deformation, and functionally graded interfaces in additively manufactured hybrid aluminum alloys [J]. Int. J. Plast., 2020, 133: 102840
15 Sarswat P K, Sarkar S, Murali A, et al. Additive manufactured new hybrid high entropy alloys derived from the AlCoFeNiSmTiVZr system [J]. Appl. Surf. Sci., 2019, 476: 242
16 Zhang Q, Chen J, Guo P F, et al. Texture and microstructure characterization in laser additive manufactured Ti-6Al-2Zr-2Sn-3Mo-1.5Cr-2Nb titanium alloy [J]. Mater. Des., 2015, 88: 550
17 Thijs L, Verhaeghe F, Craeghs T. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V [J]. Acta Mater., 2010, 58: 3303
18 Zhu Y Y, Tian X J, Li J. Microstructure evolution and layer bands of laser melting deposition Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy [J]. J. Alloys Compd., 2014, 616: 468
19 Sridharan N, Chaudhary A, Nandwana P, et al. Texture evolution during laser direct metal deposition of Ti-6Al-4V [J]. JOM, 2016, 68: 772
20 Zhang S L, Ma Y J, Huang S S, et al. Temperature-gradient induced microstructure evolution in heat-affected zone of electron beam welded Ti-6Al-4V titanium alloy [J]. J. Mater. Sci. Technol., 2019, 35: 1681
21 Wang S Q, Li W Y, Zhou Y, et al. Tensile and fatigue behavior of electron beam welded dissimilar joints of Ti-6Al-4V and IMI834 titanium alloys [J]. Mater. Sci. Eng., 2016, A649: 146
22 Li C, Gu D D, Shen Y F, et al. Densification and microstructure of TiCx /Ti nanocomposites prepared by selective laser melting [J]. Chin. J. Nonferrous Met., 2011, 21: 1554
22 李 闯, 顾冬冬, 沈以赴等. 选区激光熔化制备TiCx /Ti纳米复合材料的致密化及显微组织 [J]. 中国有色金属学报, 2011, 21: 1554
23 Ren Y M, Lin X, Huang W D. Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy [J]. Rare Met. Mater. Eng., 2017, 46: 3160
23 任永明, 林 鑫, 黄卫东. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展 [J]. 稀有金属材料与工程, 2017, 46: 3160
24 Pederson R, Niklasson F, Skystedt F, et al. Microstructure and mechanical properties of friction- and electron-beam welded Ti-6Al-4V and Ti-6Al-2Sn-4Zr-6Mo [J]. Mater. Sci. Eng., 2012, A552: 555
25 Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α+β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
25 黄森森, 马英杰, 张仕林等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
26 Sun Y Y, Wang P, Lu S L, et al. Laser welding of electron beam melted Ti-6Al-4V to wrought Ti-6Al-4V: Effect of welding angle on microstructure and mechanical properties [J]. J. Alloys Compd., 2019, 782: 967
27 Lu W, Shi Y W, Lei Y P, et al. Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy [J]. Mater. Des., 2012, 34: 509
28 Stanford N, Bate P S. Crystallographic variant selection in α-β brass [J]. Acta Mater., 2005, 53: 859
29 Bhattacharyya D, Viswanathan G B, Fraser H L. Crystallographic and morphological relationships between β phase and the Widmanstätten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy [J]. Acta Mater., 2007, 55: 6765
30 He D, Zhu J C, Zaefferer S, et al. Influences of deformation strain, strain rate and cooling rate on the Burgers orientation relationship and variants morphology during βα phase transformation in a near α titanium alloy [J]. Mater. Sci. Eng., 2012, A549: 20
31 Shi R, Ma N, Wang Y. Predicting equilibrium shape of precipitates as function of coherency state [J]. Acta Mater., 2012, 60: 4172
32 Liu Y, Dong D Y, Wang L, et al. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading [J]. Mater. Sci. Eng., 2015, A627: 296
33 Xu W, Brandt M, Sun S J, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Mater., 2015, 85: 74
34 Wang J, Lin X, Li J Q, et al. Effects of deposition strategies on macro/microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J]. Mater. Sci. Eng., 2019, A754: 735
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.