Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 473-490    DOI: 10.11900/0412.1961.2020.00430
  综述 本期目录 | 过刊浏览 |
物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应
曹庆平(), 吕林波, 王晓东, 蒋建中
浙江大学 材料科学与工程学院 新结构材料国际研究中心 杭州 310027
Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property
CAO Qingping(), LV Linbo, WANG Xiaodong, JIANG Jianzhong
International Center for New-Structured Materials (ICNSM), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
引用本文:

曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
Qingping CAO, Linbo LV, Xiaodong WANG, Jianzhong JIANG. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. Acta Metall Sin, 2021, 57(4): 473-490.

全文: PDF(18789 KB)   HTML
摘要: 

金属玻璃薄膜是在金属玻璃的基础上发展出来的一种新型薄膜材料,一方面继承无序原子排列结构所赋予的优异物理、化学和机械性能,另一方面有可能通过调整物理气相沉积工艺,构筑界面,制备纳米结构金属玻璃薄膜,克服块体金属玻璃的本征脆性。近年来,金属玻璃薄膜在各个领域快速发展,引起广泛的关注,已经成为新的研究热点。本文主要通过回顾最近几年关于金属玻璃薄膜制备参数对微观结构和性能的影响以及样品尺寸效应,分析、总结研究工作进展,并对未来可能的金属玻璃薄膜研究进行简单展望,旨在为从事金属玻璃薄膜研究的人员提供参考。

关键词 金属玻璃薄膜磁控溅射尺寸效应弹性变形塑性变形硬度    
Abstract

Metallic glass thin film (MGTF) is a new thin film material developed based on metallic glasses. It has excellent physical, chemical, and mechanical properties owing to its disordered atomic packing structure. Moreover, nanostructured MGTF can be synthesized by adjusting the process of physical vapor deposition to construct nanostructure interfaces and overcome the intrinsic brittleness of bulky metallic glasses. Recently, the rapid development of MGTF in various fields has attracted extensive attention and has become a new research hotspot. In this paper, by reviewing the influence of preparation parameters on the microstructure and properties of MGTF, and sample size effect. In this manner, research progress is analyzed and summarized, and research prospects are briefly proposed to provide reference for researchers engaged in the study of MGTF.

Key wordsmetallic glass thin film    magnetron sputtering    size effect    elastic deformation    plastic deformation    hardness
收稿日期: 2020-10-29     
ZTFLH:  TG139.8  
基金资助:国家重点研发计划项目(2016YFB0700201);国家自然科学基金项目(51871198)
图1  Zr-Cu-Al超稳定金属玻璃薄膜、淬火薄带以及不同温度退火90 h后的DSC曲线,及基底温度对玻璃化转变温度(Tg)变化的影响[19]
图2  基底温度为293、363、423和493 K下制备的1 μm厚度Ni-Nb金属玻璃薄膜的表面SEM像,及基底温度为293和493 K下沉积的厚度为50 nm的Ni-Nb金属玻璃薄膜的STEM像[23]
图3  Ni-Nb金属玻璃薄膜的硬度、模量和密度随基底温度的变化[25]
图4  熔融纺丝技术制备的金属玻璃薄带和不同沉积速率下气相沉积制备的金属玻璃薄膜Zr-Cu-Al样品的DSC曲线(加热速率为20 K/min),及Tg和晶化温度(Tx)随沉积速率的变化以及与块体金属玻璃的比较[30]
图5  在973 K退火1 h后Zr-Cu-Al金属玻璃薄膜和快冷薄带的XRD谱以及DSC曲线中的晶化放热峰[30]
图6  在0.4、4和10 Pa 条件下制备的Au-Cu-Pd-Ag-Si金属玻璃薄膜表面和横截面SEM像[35]
图7  Au-Cu-Pd-Ag-Si金属玻璃薄膜粗糙度、平均颗粒尺寸随气压的变化曲线[35]
图8  在基底温度为473 K、倾角为30°的条件下制备出来的Ni60Nb40金属玻璃薄膜表面和断面SEM像,以及表面粗糙度、密度、颗粒尺寸和柱状结构尺寸随基底温度的变化[38]
图9  不同体系下压痕深度对金属玻璃薄膜材料硬度的影响[43]
图10  Ni-Nb金属玻璃薄膜密度和弹性应变极限随薄膜厚度的变化[47]
图11  直径为3.61 μm、1.84 μm、440 nm和140 nm的Pd-Si金属玻璃薄膜微柱压缩变形SEM像[15]
图12  厚度为5 μm的Zr65Ni35金属玻璃薄膜样品在FIB处理0、10、20和30 min的压痕形貌SEM像,及剪切带数量与硬度随处理时间的变化[58]
图13  厚度为300、400、520和900 nm的Zr-Ni金属玻璃薄膜断裂形貌[59]
图14  不同厚度Pd-Si金属玻璃薄膜的电阻随拉伸应变的变化,及在经历10%拉伸应变后样品的表面形貌[70]
图15  Pd82Si18金属玻璃薄膜(厚度为250 nm,基底为聚酰亚胺)在经历10%应变过程中,裂纹形成的3个阶段[70](a) early-stage deformation where a single shear event within a single shear band leads to the formation of a single step on the surface as explained in the schematic diagram (b)(c) an intermediate stage with a neck formed due to the activation of another shear band, as represented in (d)(e) a fully developed and open crack, the corresponding schematic diagram with the profile of crack edges is depicted in (f)
1 Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
2 Bu Y, Bu X M, Lyu F C, et al. Full-color reflective filters in a large area with a wide-band tunable absorber deposited by one-step magnetron sputtering [J]. Adv. Opt. Mater., 2020, 8: 1901626
3 Oliver J N, Su Y C, Lu X N, et al. Bioactive glass coatings on metallic implants for biomedical applications [J]. Bioact. Mater., 2019, 4: 261
4 Latthe S S, Sutar R S, Bhosale A K, et al. Recent developments in air-trapped superhydrophobic and liquid-infused slippery surfaces for anti-icing application [J]. Prog. Org. Coat., 2019, 137: 105373
5 Schwarz R B, Johnson W L. Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals [J]. Phys. Rev. Lett., 1983, 51: 415
6 Lee M L, Win K K, Gan C L, et al. Ultra-high-density phase-change storage using AlNiGd metallic glass thin film as recording layer [J]. Intermetallics, 2010, 18: 119
7 Chu J H, Lee J, Chang C C, et al. Antimicrobial characteristics in Cu-containing Zr-based thin film metallic glass [J]. Surf. Coat. Technol., 2014, 259: 87
8 Hayashi Y, Yamazaki H, Ono D, et al. Investigation of PdCuSi metallic glass film for hysteresis-free and fast response capacitive MEMS hydrogen sensors [J]. Int. J. Hydrog. Energy, 2018, 43: 9438
9 Pharr G M, Herbert E G, Gao Y F. The indentation size effect: A critical examination of experimental observations and mechanistic interpretations [J]. Ann. Rev. Mater. Res., 2010, 40: 271
10 Greer J R, Oliver W C, Nix W D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients [J]. Acta Mater., 2005, 53: 1821
11 Greer J R, De Hosson J T M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect [J]. Prog. Mater. Sci., 2011, 56: 654
12 Guo H, Yan P F, Wang Y B, et al. Tensile ductility and necking of metallic glass [J]. Nat. Mater., 2007, 6: 735
13 Schuster B E, Wei Q, Hufnagel T C, et al. Size-independent strength and deformation mode in compression of a Pd-based metallic glass [J]. Acta Mater., 2008, 56: 5091
14 Dubach A, Raghavan R, Löffler J F, et al. Micropillar compression studies on a bulk metallic glass in different structural states [J]. Scr. Mater., 2009, 60: 567
15 Volkert C A, Donohue A, Spaepen F. Effect of sample size on deformation in amorphous metals [J]. J. Appl. Phys., 2008, 103: 083539
16 Kumar G, Desai A, Schroers J. Bulk metallic glass: The smaller the better [J]. Adv. Mater., 2011, 23: 461
17 Ediger M D, Angell C A, Nagel S R. Supercooled liquids and glasses [J]. J. Phys. Chem., 1996, 100: 13200
18 Swallen S F, Kearns K L, Mapes M K, et al. Organic glasses with exceptional thermodynamic and kinetic stability [J]. Science, 2007, 315: 353
19 Yu H B, Luo Y S, Samwer K. Ultrastable metallic glass [J]. Adv. Mater., 2013, 25: 5904
20 Dawson K, Zhu L, Kopff L A, et al. Highly stable vapor-deposited glasses of four tris-naphthylbenzene isomers [J]. J. Phys. Chem. Lett., 2011, 2: 2683
21 Ediger M D, Harrowell P. Perspective: Supercooled liquids and glasses [J]. J. Chem. Phys., 2012, 137: 080901
22 Guo Y L, Morozov A, Schneider D, et al. Ultrastable nanostructured polymer glasses [J]. Nat. Mater., 2012, 11: 337
23 Liu S Y, Cao Q P, Yu Q, et al. Substrate temperature effect on growth behavior and microstructure-properties relationship in amorphous Ni-Nb thin films [J]. J. Non-Cryst. Solids, 2019, 510: 112
24 Mullins W W. The effect of thermal grooving on grain boundary motion [J]. Acta Metall., 1958, 6: 414
25 Liu S Y, Cao Q P, Qian X, et al. Effects of substrate temperature on structure, thermal stability and mechanical property of a Zr-based metallic glass thin film [J]. Thin Solid Films, 2015, 595: 17
26 Zeng F, Gao Y, Li L, et al. Elastic modulus and hardness of Cu-Ta amorphous films [J]. J. Alloys Compd., 2005, 389: 75
27 Kearns K L, Swallen S F, Ediger M D, et al. Influence of substrate temperature on the stability of glasses prepared by vapor deposition [J]. J. Chem. Phys., 2007, 127: 154702
28 Singh S, Ediger M D, de Pablo J J. Ultrastable glasses from in silico vapour deposition [J]. Nat. Mater., 2013, 12: 139
29 Yu H B, Tylinski M, Guiseppi-Elie A, et al. Suppression of β relaxation in vapor-deposited ultrastable glasses [J]. Phys. Rev. Lett., 2015, 115: 185501
30 Luo P, Cao C R, Zhu F, et al. Ultrastable metallic glasses formed on cold substrates [J]. Nat. Commun., 2018, 9: 1389
31 Chou H S, Huang J C, Chang L W. Mechanical properties of ZrCuTi thin film metallic glass with high content of immiscible tantalum [J]. Surf. Coat. Technol., 2010, 205: 587
32 Chen P S, Chen H W, Duh J G, et al. Characterization of mechanical properties and adhesion of Ta-Zr-Cu-Al-Ag thin film metallic glasses [J]. Surf. Coat. Technol., 2013, 231: 332
33 Obeydavi A, Shafyei A, Rezaeian A, et al. Microstructure, mechanical properties and corrosion performance of Fe44Cr15Mo14Co7C10B5-Si5 thin film metallic glass deposited by DC magnetron sputtering [J]. J. Non-Cryst. Solids, 2020, 527: 119718
34 Yanagitani T, Suzuki M. Significant shear mode softening in a c-axis tilt nanostructured hexagonal thin film induced by a self-shadowing effect [J]. Scr. Mater., 2013, 69: 724
35 Denis P, Liu S Y, Fecht H J. Growth mode transition in Au-based thin film metallic glasses [J]. Thin Solid Films, 2018, 665: 29
36 Thornton J A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings [J]. J. Vac. Sci. Technol., 1974, 11: 666
37 Śniadecki Z, Wang D, Ivanisenko Y, et al. Nanoscale morphology of Ni50Ti45Cu5 nanoglass [J]. Mater. Charact., 2016, 113: 26
38 Yao W, Cao Q P, Liu S Y, et al. Tailoring nanostructured Ni-Nb metallic glassy thin films by substrate temperature [J]. Acta Mater., 2020, 194: 13
39 Mayr S G, Samwer K. Tailoring the surface morphology of amorphous thin films by appropriately chosen deposition conditions [J]. J. Appl. Phys., 2002, 91: 2779
40 Bei H, George E P, Hay J L, et al. Influence of indenter tip geometry on elastic deformation during nanoindentation [J]. Phys. Rev. Lett., 2005, 95: 045501
41 Qian X, Cao Q P, Liu S Y, et al. Dependence of shear yield strain and shear transformation zone on the glass transition temperature in thin film metallic glasses [J]. J. Alloys Compd., 2015, 652: 191
42 Cao Q P, Sun L J, Wang C, et al. Effect of loading rate on creep behavior and shear transformation zone in amorphous alloy thin films, and its correlation with deformation mode transition [J]. Thin Solid Films, 2019, 681: 23
43 Wang C, Cao Q P, Feng T, et al. Indentation size effects of mechanical behavior and shear transformation zone in thin film metallic glasses [J]. Thin Solid Films, 2018, 646: 36
44 Ma C F, Li S, Huang P, et al. Size dependent hidden serration behaviors of shear banding in metallic glass thin films [J]. J. Non-Cryst. Solids, 2020, 534: 119953
45 Johnson W L, Samwer K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence [J]. Phys. Rev. Lett., 2005, 95: 195501
46 Jang D C, Greer J R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses [J]. Nat. Mater., 2010, 9: 215
47 Jiang Q K, Liu P, Cao Q P, et al. The effect of size on the elastic strain limit in Ni60Nb40 glassy films [J]. Acta Mater., 2013, 61: 4689
48 Deng Q S, Cheng Y Q, Yue Y H, et al. Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding [J]. Acta Mater., 2011, 59: 6511
49 Jiang Q K, Liu P, Ma Y, et al. Super elastic strain limit in metallic glass films [J]. Sci. Rep., 2012, 2: 852
50 Ma Y, Cao Q P, Qu S X, et al. Stress-state-dependent deformation behavior in Ni-Nb metallic glassy film [J]. Acta Mater., 2012, 60: 4136
51 Wright T W, Ockendon H. A scaling law for the effect of inertia on the formation of adiabatic shear bands [J]. Int. J. Plast., 1996, 12: 927
52 Ashby M F, Greer A L. Metallic glasses as structural materials [J]. Scr. Mater., 2006, 54: 321
53 Zhang G P, Liu Y, Zhang B. Deformation behavior of free-standing Pd-based thin film metallic glass for micro electro mechanical systems applications [J]. Adv. Eng. Mater., 2005, 7: 606
54 Liu Y D, Hata S, Wada K, et al. Thermal, mechanical and electrical properties of Pd-based thin-film metallic glass [J]. Jpn. J. Appl. Phys., 2001, 40: 5382
55 Uchic M D, Dimiduk D M, Florando J N, et al. Exploring Specimen Size Effects in Plastic Deformation of Ni3(Al, Ta) [M]. MRS Online Proceeding Library, 2002, 753: 14.
56 Greer J R, Nix W D. Size dependence of mechanical properties of gold at the sub-micron scale [J]. Appl. Phys., 2005, 80A: 1625
57 Frick C P, Clark B G, Orso S, et al. Size effect on strength and strain hardening of small-scale [1 1 1] nickel compression pillars [J]. Mater. Sci. Eng., 2008, A489: 319
58 Liu Y H, Zhao F, Li Y L, et al. Deformation behavior of metallic glass thin films [J]. J. Appl. Phys., 2012, 112: 063504
59 Ghidelli M, Volland A, Blandin J J, et al. Exploring the mechanical size effects in Zr65Ni35 thin film metallic glasses [J]. J. Alloys Compd., 2014, 615(suppl.1): S90
60 Apreutesei M, Esnouf C, Billard A, et al. Impact of local nanocrystallization on mechanical properties in the Zr-59 at.% Cu metallic glass thin film [J]. Mater. Des., 2016, 108: 8
61 Dalla Torre F H, Dubach A, Schällibaum J, et al. Shear striations and deformation kinetics in highly deformed Zr-based bulk metallic glasses [J]. Acta Mater., 2008, 56: 4635
62 Hata S, Yamauchi R, Sakurai J, et al. Behavior of joining interface between thin film metallic glass and silicon nitride at heating [J]. Mater. Sci. Eng., 2008, B148: 149
63 Chen D Z, Jang D, Guan K M, et al. Nanometallic glasses: Size reduction brings ductility, surface state drives its extent [J]. Nano Lett., 2013, 13: 4462
64 Tian L, Wang X L, Shan Z W. Mechanical behavior of micronanoscaled metallic glasses [J]. Mater. Res. Lett., 2016, 4: 63
65 Ye J C, Chu J P, Chen Y C, et al. Hardness, yield strength, and plastic flow in thin film metallic-glass [J]. J. Appl. Phys., 2012, 112: 053516
66 Magagnosc D J, Ehrbar R, Kumar G, et al. Tunable tensile ductility in metallic glasses [J]. Sci. Rep., 2013, 3: 1096
67 Yi J, Wang W H, Lewandowski J J. Sample size and preparation effects on the tensile ductility of Pd-based metallic glass nanowires [J]. Acta Mater., 2015, 87: 1
68 Luo J H, Wu F F, Huang J Y, et al. Superelongation and atomic chain formation in nanosized metallic glass [J]. Phys. Rev. Lett., 2010, 104: 215503
69 Ebner C, Rajagopalan J, Lekka C, et al. Electron beam induced rejuvenation in a metallic glass film during in-situ TEM tensile straining [J]. Acta Mater., 2019, 181: 148
70 Glushko O, Mühlbacher M, Gammer C, et al. Exceptional fracture resistance of ultrathin metallic glass films due to an intrinsic size effect [J]. Sci. Rep., 2019, 9: 8281
71 Leterrier Y, Médico L, Demarco F, et al. Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays [J]. Thin Solid Films, 2004, 460: 156
72 Greer A L, Cheng Y Q, Ma E. Shear bands in metallic glasses [J]. Mater. Sci. Eng., 2013, R74(4): 71
73 Li Q K, Li M. Assessing the critical sizes for shear band formation in metallic glasses from molecular dynamics simulation [J]. Appl. Phys. Lett., 2007, 91: 231905
74 Cao Q P, Wang C, Bu K J, et al. The influence of glass transition temperature on the critical size for deformation mode transition in metallic glassy films [J]. Scr. Mater., 2014, 77: 64
75 Zhong C, Zhang H, Cao Q P, et al. The size-dependent non-localized deformation in a metallic alloy [J]. Scr. Mater., 2015, 101: 48
76 Chen C Q, Pei Y T, De Hosson J T M. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments [J]. Acta Mater., 2010, 58: 189
77 Schuh C A, Lund A C, Nieh T G. New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling [J]. Acta Mater., 2004, 52: 5879
78 McCarthy C T, Hussey M, Gilchrist M D. On the sharpness of straight edge blades in cutting soft solids: Part I—indentation experiments [J]. Eng. Fract. Mech., 2007, 74: 2205
79 Khan M M, Deen K M, Haider W. Combinatorial development and assessment of a Zr-based metallic glass for prospective biomedical applications [J]. J. Non-Cryst. Solids, 2019, 523: 119544
80 Tsai P H, Lin Y Z, Li J B, et al. Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating [J]. Intermetallics, 2012, 31: 127
81 Cai C N, Zhang C, Sun Y S, et al. ZrCuFeAlAg thin film metallic glass for potential dental applications [J]. Intermetallics, 2017, 86: 80
82 Chu J P, Diyatmika W, Tseng Y J, et al. Coating cutting blades with thin-film metallic glass to enhance sharpness [J]. Sci. Rep., 2019, 9: 15558
83 Chen X W, Hong L, Xu Y F, et al. Ceramic pore channels with inducted carbon nanotubes for removing oil from water [J]. ACS Appl. Mater. Interfaces, 2012, 4: 1909
84 Ke J L, Huang C H, Chen Y H, et al. In vitro biocompatibility response of Ti-Zr-Si thin film metallic glasses [J]. Appl. Surf. Sci., 2014, 322: 41
85 Bouala G I N, Etiemble A, Der Loughian C, et al. Silver influence on the antibacterial activity of multi-functional Zr-Cu based thin film metallic glasses [J]. Surf. Coat. Technol., 2018, 343: 108
86 Chu J P, Yu C C, Tanatsugu Y, et al. Non-stick syringe needles: Beneficial effects of thin film metallic glass coating [J]. Sci. Rep., 2016, 6: 31847
87 Kassa S T, Hu C C, Liao Y C, et al. Thin film metallic glass as an effective coating for enhancing oil/water separation of electrospun polyacrylonitrile membrane [J]. Surf. Coat. Technol., 2019, 368: 33
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[3] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[4] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[5] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[6] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[7] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[8] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[9] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[10] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[11] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[12] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[13] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[14] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[15] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.