Please wait a minute...
金属学报  2021, Vol. 57 Issue (7): 903-912    DOI: 10.11900/0412.1961.2020.00329
  研究论文 本期目录 | 过刊浏览 |
模压变形中国低活化马氏体钢沉淀相对其力学性能的影响
薛克敏, 盛杰, 严思梁, 田文春, 李萍()
合肥工业大学 材料科学与工程学院 合肥 230009
Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing
XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping()
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
引用本文:

薛克敏, 盛杰, 严思梁, 田文春, 李萍. 模压变形中国低活化马氏体钢沉淀相对其力学性能的影响[J]. 金属学报, 2021, 57(7): 903-912.
Kemin XUE, Jie SHENG, Siliang YAN, Wenchun TIAN, Ping LI. Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing[J]. Acta Metall Sin, 2021, 57(7): 903-912.

全文: PDF(17182 KB)   HTML
摘要: 

采用室温拉伸、500℃高温拉伸、显微硬度、SEM、TEM等方法研究中国低活化马氏体钢(CLAM钢)多道次模压变形诱导沉淀相回溶和析出对力学性能的影响。结果表明,三道次模压变形后,有效细化了晶粒和沉淀相,尺寸为5 μm以上的晶粒所占体积分数减小为0.49%,M23C6相和MX相平均尺寸分别从107.32和17.12 nm减小到93.97和13.59 nm。累积应变为2.32时,抗拉强度和硬度分别为720 MPa和2.46 GPa,较变形前分别增加了22.87%和12.33%;当累积应变达到3.48时,与累积应变为2.32时相比其强度降低了4.31%,硬度和延伸率分别上升了2.03%和6.27%,该变化与变形过程中发生明显的沉淀相回溶有关。

关键词 中国低活化马氏体钢限制性模压析出强化力学性能    
Abstract

In this work, a constrained groove pressing experiment was carried out to investigate the influence of constrained groove pressing on precipitated phase dissolution and mechanical properties of China low activation martensitic (CLAM) steels. The aim of this study is to improve the comprehensive service performances of CLAM steels used in the first wall of fusion reactor cladding. The influence of the dissolution and precipitation of precipitates on the mechanical properties of CLAM steel subjected to multi-pass groove pressing was investigated via tensile tests at room temperature and 500oC, microhardness tests, SEM, and TEM. The results show that the grains and precipitated phases are effectively refined after three passes of groove pressing, the volume fraction of grains above 5 μm is reduced to 0.49%, and the average size of M23C6 and MX phases is reduced from 107.32 and 17.12 nm to 93.97 and 13.59 nm, respectively. When the cumulative strain of the billets reaches a value of 2.32 (pass two), the tensile strength and microhardness are found to be 720 MPa and 2.46 GPa, respectively. When the cumulative strain increases to 3.48 (pass three), the strength of the CLAM steel decreases by 4.31%, whereas the microhardness and elongation increase by 2.03% and 6.27%, respectively. These trends are related to the evident dissolution of the precipitates during the deformation process.

Key wordsChina low activation martensitic steel    constrained groove pressing    precipitation strengthening    mechanical property
收稿日期: 2020-08-26     
ZTFLH:  TG316.3  
基金资助:国家自然科学基金项目(51875158)
作者简介: 薛克敏,男,1963年生,教授
图1  中国低活化马氏体钢(CLAM钢)母材及热处理后显微组织的OM像和SEM像
图2  一道次模压变形CLAM钢晶界和晶内处沉淀相的TEM分析(a) TEM image of M23C6 phase at the grain boundary and insets show the HRTEM image and fast Fourier transformation (dhkl—interplanar spacing)(b) line scan of M23C6 phase alone the arrow in Fig.2a(c) TEM image and corresponding SAED pattern (inset) of M23C6 (showed by arrow) at the grain boundary(d) TEM image and corresponding SAED pattern (inset) of intergranular MX in the circle
图3  不同道次模压变形前后CLAM钢显微组织的TEM像
图4  不同道次模压变形前后CLAM钢沉淀相形貌的TEM像
图5  不同道次模压变形前后CLAM钢的晶粒和析出相尺寸分布(a) grain size(b) M23C6 precipitate size(c) MX precipitate size
图6  不同道次模压变形前后CLAM钢的抗拉强度、延伸率曲线和三道次模压变形后拉伸断口形貌的SEM像
图7  CLAM钢的硬度与平均晶粒尺寸满足Hall-Petch关系
图8  MX相钉扎位错的TEM像
ProcessingM23C6MX
conditionσpHσpH
MPaMPaMPaMPa
As-tempered47.1141.3127381
One pass57.4172.2167501
Two passes50.6151.8249747
Three passes42.1126.3169507
表1  沉淀相析出强化结果
1 Tan W X. Effect of heat treatment on microstructure and mechanical properties of low activation ferrite/martensitic steels used for the fusion reactor [D]. Wuhan: Huazhong University of Science and Technology, 2011
1 谭文霞. 聚变堆用低活化钢的热处理改性及微观组织和性能研究 [D]. 武汉: 华中科技大学, 2011
2 Xu Y P, Lyu Y M, Zhou H S, et al. A review on the development of the structural materials of the fusion blanket [J]. Mater. Rev., 2018, 32: 2897
2 徐玉平, 吕一鸣, 周海山等. 核聚变堆包层结构材料研究进展及展望 [J]. 材料导报, 2018, 32: 2897
3 Tan L, Hoelzer D T, Busby J T, et al. Microstructure control for high strength 9Cr ferritic-martensitic steels [J]. J. Nucl. Mater., 2012, 422: 45
4 van der Schaaf B, Tavassoli F, Fazio C, et al. The development of EUROFER reduced activation steel [J]. Fusion Eng. Des., 2003, 69: 197
5 Klueh R L, Gelles D S, Jitsukawa S, et al. Ferritic/martensitic steels—Overview of recent results [J]. J. Nucl. Mater., 2002, 307-311: 455
6 Shankar V, Mariappan K, Sandhya R, et al. Long term creep-fatigue interaction studies on India-specific reduced activation ferritic-martensitic (IN-RAFM) steel [J]. Int. J. Fatigue, 2017, 98: 259
7 Yuan D Q, Ma H L, Fan P, et al. Synergistic effect on formation of radiation damage in CLAM steel studied by triple beam irradiation [J]. Defect Diffus. Forum, 2017, 373: 117
8 Taneike M, Sawada K, Abe F. Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment [J]. Metall. Mater. Trans., 2004, 35A: 1255
9 Wang H, Yan W, van Zwaag S, et al. On the 650oC thermostability of 9-12Cr heat resistant steels containing different precipitates [J]. Acta Mater., 2017, 134: 143
10 Liu S J, Huang Q Y, Peng L, et al. Microstructure and its influence on mechanical properties of CLAM steel [J]. Fusion Eng. Des., 2012, 87: 1628
11 Zhong B Y, Huang B, Li C J, et al. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K [J]. J. Nucl. Mater., 2014, 455: 640
12 Li M S, Yang S. Effect of heat treatment on the microstructure and properties of 9Cr2WVTa reduced activation steels [A]. Energy Materials Conference Proceedings 2014 [C]. Oxford, England: Blackwell Science Publ., 2014: 551
13 Aydogan E, Chen T, Gigax J G, et al. Effect of self-ion irradiation on the microstructural changes of alloy EK-181 in annealed and severely deformed conditions [J]. J. Nucl. Mater., 2017, 487: 96
14 Lee S H, Saito Y, Tsuji N, et al. Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process [J]. Scr. Mater., 2002, 46: 281
15 Huang J Y, Zhu Y T, Alexander D J, et al. Development of repetitive corrugation and straightening [J]. Mater. Sci. Eng., 2004, A371: 35
16 Yang K H, Peng K P, Chen W Z. Microstructural evolution and grain refinement of 1060 pure Al processed by constrained groove pressing [J]. Chin. J. Nonferrous Met., 2011, 21: 3026
16 杨开怀, 彭开萍, 陈文哲. 限制模压变形1060纯铝的组织演化与晶粒细化 [J]. 中国有色金属学报, 2011, 21: 3026
17 Shin D H, Park J J, Kim Y S, et al. Constrained groove pressing and its application to grain refinement of aluminum [J]. Mater. Sci. Eng., 2002, A328: 98
18 Wang Z S. Experimental and numerical study on constrained groove pressing of sheet metals [D]. Jinan: Shandong University, 2014
18 王宗申. 金属板材限制模压变形工艺的实验与数值模拟研究 [D]. 济南: 山东大学, 2014
19 Ukai S, Mizuta S, Fujiwara M, et al. Development of 9Cr-ODS martensitic steel claddings for fuel pins by means of ferrite to austenite phase transformation [J]. J. Nucl. Sci. Technol., 2002, 39: 778
20 Wang D, Zhang J, Lou L H. Formation and stability of nano-scaled M23C6 carbide in a directionally solidified Ni-base superalloy [J]. Mater. Charact., 2009, 60: 1517
21 Shtansky D V, Nakai K, Ohmori Y. Crystallography and structural evolution during reverse transformation in an Fe-17Cr-0.5C tempered martensite [J]. Acta Mater., 2000, 48: 1679
22 Armaki H G, Chen R P, Maruyama K, et al. Creep behavior and degradation of subgrain structures pinned by nanoscale precipitates in strength-enhanced 5 to 12 pct Cr ferritic steels [J]. Metall. Mater. Trans, 2011, 42A: 3084
23 Dudova N, Plotnikova A, Molodov D, et al. Structural changes of tempered martensitic 9%Cr-2%W-3%Co steel during creep at 650°C [J]. Mater. Sci. Eng., 2012, A534: 632
24 Xiao X, Liu G Q, Hu B F, et al. Coarsening behavior for M23C6 carbide in 12%Cr-reduced activation ferrite/martensite steel: Experimental study combined with DICTRA simulation [J]. J. Mater. Sci., 2013, 48: 5410
25 Hughes D A, Hansen N. High angle boundaries formed by grain subdivision mechanisms [J]. Acta Mater., 1997, 45: 3871
26 Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Mater., 2002, 50: 4603
27 Murayama M, Horita Z, Hono K. Microstructure of two-phase Al-1.7at% Cu alloy deformed by equal-channel angular pressing [J]. Acta Mater., 2001, 49: 21
28 Liu Z Y, Liang G X, Wang E D, et al. Effect of equal-channel angular pressing on structure of Al alloy 2024 [J]. Trans. Nonferrous Met. Soc. China, 1997, 7: 160
29 Jin X J, Chen S H, Rong L J. Microstructure modification and mechanical property improvement of reduced activation ferritic/martensitic steel by severe plastic deformation [J]. Mater. Sci. Eng., 2018, A712: 97
30 Apps P J, Bowen J R, Prangnell P B. The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing [J]. Acta Mater., 2003, 51: 2811
31 Huang W J. Severe plastic deformation induces Al-4wt.%Cu alloy precipitated phase re-dissolution and subsequent aging behavior [D]. Changsha: Central South University, 2012
31 黄文杰. 强塑性变形诱导Al-4wt.%Cu合金析出相回溶及之后的时效行为研究 [D]. 长沙: 中南大学, 2012
32 Xu X C, Liu Z Y, Dang P, et al. Mechanism of re-dissolution and re-precipitation of second phases in Al-Zn-Mg-Cu alloy under severe plastic deformation [J]. Mater. Sci. Technol., 2005, 13: 178
32 许晓嫦, 刘志义, 党 朋等. 室温强塑性变形下回溶和再析出的机理研究 [J]. 材料科学与工艺, 2005, 13: 178
33 Hu N, Xu X C, Zhang Z Z, et al. Effect of re-dissolution of severely deformed precipitated phase on mechanical properties of Al-Cu alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 1922
33 胡 楠, 许晓嫦, 张孜昭等. 强变形诱导析出相回溶对Al-Cu合金力学性能的影响 [J]. 中国有色金属学报, 2010, 20: 1922
34 Mao C L, Liu C X, Yu L M, et al. Mechanical properties and tensile deformation behavior of a reduced activated ferritic-martensitic (RAFM) steel at elevated temperatures [J]. Mater. Sci. Eng., 2018, A725: 283
35 Foley D C, Hartwig K T, Maloy S A, et al. Grain refinement of T91 alloy by equal channel angular pressing [J]. J. Nucl. Mater., 2009, 389: 221
36 Sasaki T T, Oh-Ishi K, Ohkubo T, et al. Effect of double aging and microalloying on the age hardening behavior of a Mg-Sn-Zn alloy [J]. Mater. Sci. Eng., 2011, A530: 1
37 Panait C G, Zielińska-Lipiec A, Koziel T, et al. Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600oC for more than 100,000 h [J]. Mater. Sci. Eng., 2010, A527: 4062
38 Hamada K, Tokuno K, Tomita Y, et al. Effects of precipitate shape on high temperature strength of modified 9Cr-1Mo steels [J]. ISIJ Int., 1995, 35: 86
39 Ravikirana, Mythili R, Raju S, et al. Influence of W and Ta content on microstructural characteristics in heat treated 9Cr-reduced activation ferritic/martensitic steels [J]. Mater. Charact., 2013, 84: 196
40 Brooks I, Lin P, Palumbo G, et al. Analysis of hardness-tensile strength relationships for electroformed nanocrystalline materials [J]. Mater. Sci. Eng., 2008, A491: 412
41 Han B Q, Mohamed F A, Lavernia E J. Mechanical properties of iron processed by severe plastic deformation [J]. Metall. Mater. Trans., 2003, 34A: 71
42 De Messemaeker J, Verlinden B, Van Humbeeck J. On the strength of boundaries in submicron IF steel [J]. Mater. Lett., 2004, 58: 3782
43 Kashyap B P, Tangri K. Hall-Petch relationship and substructural evolution in boron containing type 316L stainless steel [J]. Acta Mater., 1997, 45: 2383
44 Liu X D, Nagumo M, Umemoto M. The Hall-Petch relationship in nanocrystalline materials [J]. Mater. Trans., 1997, 38: 1033
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.