|
|
形状记忆合金弹热制冷效应的研究现状 |
肖飞, 陈宏, 金学军( ) |
上海交通大学 材料科学与工程学院 上海 200240 |
|
Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy |
XIAO Fei, CHEN Hong, JIN Xuejun( ) |
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
Fei XIAO,
Hong CHEN,
Xuejun JIN.
Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. Acta Metall Sin, 2021, 57(1): 29-41.
1 |
Coulomb D, Dupont J L, Pichard A. The role of refrigeration in the global economy [A]. Proceedings of the 29th Informatory Note on Refrigeration Technologies [C]. France: International Institute of Refrigeration, 2015
|
2 |
Calm J M. The next generation of refrigerants—Historical review, considerations, and outlook [J]. Int. J. Refrig., 2008, 31: 1123
|
3 |
Moya X, Kar-Narayan S, Mathur N D. Caloric materials near ferroic phase transitions [J]. Nat. Mater., 2014, 13: 439
|
4 |
Crossley S, Mathur N D, Moya X. New developments in caloric materials for cooling applications [J]. AIP Adv., 2015, 5: 067153
|
5 |
Liu J, Gottschall T, Skokov K P, et al. Giant magnetocaloric effect driven by structural transitions [J]. Nat. Mater., 2012, 11: 620
|
6 |
Gschneidner K A, Pecharsky V K. Magnetocaloric materials [J]. Annu. Rev. Mater. Sci., 2000, 30: 387
|
7 |
Hao X H, Zhai J W, Kong L B, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials [J]. Prog. Mater. Sci., 2014, 63: 1
|
8 |
Moya X, Stern-Taulats E, Crossley S, et al. Giant electrocaloric strength in single-crystal BaTiO3 [J]. Adv. Mater., 2013, 25: 1360
|
9 |
Mañosa L, Planes A. Materials with giant mechanocaloric effects: Cooling by strength [J]. Adv. Mater., 2017, 29: 1603607
|
10 |
Mañosa L, Planes A, Acet M. Advanced materials for solid-state refrigeration [J]. J. Mater. Chem., 2013, 1A: 4925
|
11 |
Mañosa L, González-Alonso D, Planes A, et al. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy [J]. Nat. Mater., 2010, 9: 478
|
12 |
Fähler S, Rößler U K, Kastner O, et al. Caloric effects in ferroic materials: New concepts for cooling [J]. Adv. Eng. Mater., 2012, 14: 10
|
13 |
EERE Publication and Product Library. Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies [R]. United States:
|
13 |
U.S. Department of Energy, 2014
|
14 |
Gough J P. On some thermo-dynamic properties of solids [J]. Philos. Trans. R. Soc. London, 1859, 149: 91
|
15 |
Rodriguez C, Brown L C. The thermal effect due to stress-induced martensite formation in β-CuAlNi single crystals [J]. Metall. Mater. Trans., 1980, 11A: 147
|
16 |
Bonnot E, Romero R, Mañosa L, et al. Elastocaloric effect associated with the martensitic transition in shape-memory alloys [J]. Phys. Rev. Lett., 2008, 100: 125901
|
17 |
Ossmer H, Chluba C, Gueltig M, et al. Local evolution of the elastocaloric effect in TiNi-based films [J]. Shape Mem. Superelast., 2015, 1: 142
|
18 |
Ossmer H, Lambrecht F, Gültig M, et al. Evolution of temperature profiles in TiNi films for elastocaloric cooling [J]. Acta Mater., 2014, 81: 9
|
19 |
Tušek J, Žerovnik A, Čebron M, et al. Elastocaloric effect vs fatigue life: Exploring the durability limits of Ni-Ti plates under pre-strain conditions for elastocaloric cooling [J]. Acta Mater., 2018, 150: 295
|
20 |
Gràcia-Condal A, Stern-Taulats E, Planes A, et al. The giant elastocaloric effect in a Cu-Zn-Al shape-memory alloy: A calorimetric study [J]. Phys. Status Solidi, 2018, 255B: 1700422
|
21 |
Buehler W J, Gilfrich J V, Wiley R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi [J]. J. Appl. Phys., 1963, 34: 1475
|
22 |
Cui J, Wu Y M, Muehlbauer J, et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires [J]. Appl. Phys. Lett., 2012, 101: 073904
|
23 |
Tušek J, Engelbrecht K, Mikkelsen L P, et al. Elastocaloric effect of Ni-Ti wire for application in a cooling device [J]. J. Appl. Phys., 2015, 117: 124901
|
24 |
Tušek J, Engelbrecht K, Millán-Solsona R, et al. The elastocaloric effect: A way to cool efficiently [J]. Adv. Energy Mater., 2015, 5: 1500361
|
25 |
Tušek J, Engelbrecht K, Eriksen D, et al. A regenerative elastocaloric heat pump [J]. Nat. Energy, 2016, 1: 16134
|
26 |
Bechtold C, Chluba C, Lima d M R, et al. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films [J]. Appl. Phys. Lett., 2012, 101: 091903
|
27 |
Chen H, Xiao F, Liang X, et al. Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement [J]. Scr. Mater., 2019, 162: 230
|
28 |
Chluba C, Ge W W, de Miranda R L, et al. Ultralow-fatigue shape memory alloy films [J]. Science, 2015, 348: 1004
|
29 |
Chen H, Xiao F, Liang X, et al. Stable and large superelasticity and elastocaloric effect in nanocrystalline Ti-44Ni-5Cu-1Al (at%) alloy [J]. Acta Mater., 2018, 158: 330
|
30 |
Chen H, Xiao F, Liang X, et al. Giant elastocaloric effect with wide temperature window in an Al-doped nanocrystalline Ti-Ni-Cu shape memory alloy [J]. Acta Mater., 2019, 177: 169
|
31 |
Hou H L, Simsek E, Ma T, et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing [J]. Science, 2019, 366: 1116
|
32 |
Chen H, Xiao F, Zhu L, et al. Elastocaloric effect with a broad temperature window and low energy loss in an ultrafine-grained Ti-44Ni-5Cu-1Al (at%) shape memory alloy, in press
|
33 |
Wagner M, Sawaguchi T, Kausträter G, et al. Structural fatigue of pseudoelastic NiTi shape memory wires [J]. Mater. Sci. Eng., 2004, A378: 105
|
34 |
Zhang Y H, You Y J, Moumni Z, et al. Experimental and theoretical investigation of the frequency effect on low cycle fatigue of shape memory alloys [J]. Int. J. Plast., 2017, 90: 1
|
35 |
Yu C, Kang G Z, Kan Q H, et al. Rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy: Thermo-mechanical coupled and physical mechanism-based constitutive model [J]. Int. J. Plast., 2015, 72: 60
|
36 |
Ossmer H, Chluba C, Gueltig M, et al. Local evolution of the elastocaloric effect in TiNi-based films [J]. Shape Mem. Superelast., 2015, 1: 142
|
37 |
Schmidt M, Kirsch S M, Seelecke S, et al. Elastocaloric cooling: From fundamental thermodynamics to solid state air conditioning [J]. Sci. Technol. Built Environ., 2016, 22: 475
|
38 |
Schmidt M, Ullrich J, Wieczorek A, et al. Thermal stabilization of NiTiCuV shape memory alloys: Observations during elastocaloric training [J]. Shape Mem. Superelast., 2015, 1: 132
|
39 |
Li S H, Cong D Y, Sun X M, et al. Wide-temperature-range perfect superelasticity and giant elastocaloric effect in a high entropy alloy [J]. Mater. Res. Lett., 2019, 7: 482
|
40 |
Xiao Y, Zeng P, Lei L P, et al. In situ observation on temperature dependence of martensitic transformation and plastic deformation in superelastic NiTi shape memory alloy [J]. Mater. Des., 2017, 134: 111
|
41 |
Engelbrecht K, Tušek J, Sanna S, et al. Effects of surface finish and mechanical training on Ni-Ti sheets for elastocaloric cooling [J]. APL Mater., 2016, 4: 064110
|
42 |
Pataky G J, Ertekin E, Sehitoglu H. Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl [J]. Acta Mater., 2015, 96: 420
|
43 |
Wu Y, Ertekin E, Sehitoglu H. Elastocaloric cooling capacity of shape memory alloys—Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation [J]. Acta Mater., 2017, 135: 158
|
44 |
Soto-Parra D, Vives E, Mañosa L, et al. Elastocaloric effect in Ti-Ni shape-memory wires associated with the B2↔B19' and B2↔R structural transitions [J]. Appl. Phys. Lett., 2016, 108: 071902
|
45 |
Liang X, Xiao F, Jin M J, et al. Elastocaloric effect induced by the rubber-like behavior of nanocrystalline wires of a Ti-50.8Ni (at.%) alloy [J]. Scr. Mater., 2017, 134: 42
|
46 |
Xiao F, Fukuda T, Kakeshita T. Inverse elastocaloric effect in a Ti-Ni alloy containing aligned coherent particles of Ti3Ni4 [J]. Scr. Mater., 2016, 124: 133
|
47 |
Miyazaki S, Otsuka K. Development of shape memory alloys [J]. ISIJ Int., 1989, 29: 353
|
48 |
Miura S, Morita Y, Nakanishi N. Shape Memory Effects in Alloys [M]. Boston, MA: Springer, 1975: 389
|
49 |
Miura S, Maeda S, Nakanishi N. Pseudoelasticity in Au-Cu-Zn thermoelastic martensite [J]. Philo. Mag., 1974, 30: 565
|
50 |
Brown L C. The thermal effect in pseudoelastic single crystals of β-CuZnSn [J]. Metall. Mater. Trans., 1981, 12A: 1491
|
51 |
Mañosa L, Planes A, Ortín J, et al. Entropy change of martensitic transformations in Cu-based shape-memory alloys [J]. Phys. Rev., 1993, 48B: 3611
|
52 |
Vives E, Burrows S, Edwards R S, et al. Temperature contour maps at the strain-induced martensitic transition of a Cu-Zn-Al shape-memory single crystal [J]. Appl. Phys. Lett., 2011, 98: 011902
|
53 |
Mañosa L, Jarque-Farnos S, Vives E, et al. Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys [J]. Appl. Phys. Lett., 2013, 103: 211904
|
54 |
Omori T, Kusama T, Kawata S, et al. Abnormal grain growth induced by cyclic heat treatment [J]. Science, 2013, 341: 1500
|
55 |
Chen Y, Zhang X Z, Dunand D C, et al. Shape memory and superelasticity in polycrystalline Cu-Al-Ni microwires [J]. Appl. Phys. Lett., 2009, 95: 171906
|
56 |
Yuan B, Zhu X J, Zhang X X, et al. Elastocaloric effect with small hysteresis in bamboo-grained Cu-Al-Mn microwires [J]. J. Mater. Sci., 2019, 54: 9613
|
57 |
Yuan B, Qian M F, Zhang X X, et al. Enhanced cyclic stability of elastocaloric effect in oligocrystalline Cu-Al-Mn microwires via cold-drawing [J]. Int. J. Refrig., 2020, 114: 54
|
58 |
Yuan B, Qian M F, Zhang X X, et al. Grain structure related inhomogeneous elastocaloric effects in Cu-Al-Mn shape memory microwires [J]. Scr. Mater., 2020, 178: 356
|
59 |
Wayman C M. On memory effects related to martensitic transformations and observations in β-brass and Fe3Pt [J]. Scr. Metall., 1971, 5: 489
|
60 |
Peng H B, Chen J, Wang Y N, et al. Key factors achieving large recovery strains in polycrystalline Fe-Mn-Si-based shape memory alloys: A review [J]. Adv. Eng. Mater., 2018, 20: 1700741
|
61 |
Maki T, Tamura I. On the thin plate martensite in ferrous alloys and its various properties [J]. Bull. Jpn. Inst. Met., 1984, 23: 229
|
61 |
牧 正志, 田村 今男. 鉄合金の“thin plate”マルテンサイトとその性質 [J]. 日本金属学会会報, 1984, 23: 229
|
62 |
Yang G S, Jonnasson R, Bake S N, et al. Phase transformations of ferromagnetic Fe-Pd-Pt-based shape memory alloys [J]. Mater. Devices Smart Syst., 2004, 785: 475
|
63 |
Nikitin S A, Myalikgulyev G, Annaorazov M P, et al. Giant elastocaloric effect in FeRh alloy [J]. Phys. Lett., 1992, 171A: 234
|
64 |
Annaorazov M P, Nikitin S A, Tyurin A L, et al. Heat pump cycles based on the AF-F transition in Fe-Rh alloys induced by tensile stress [J]. Int. J. Refrig., 2002, 25: 1034
|
65 |
Manekar M, Roy S B. Reproducible room temperature giant magnetocaloric effect in Fe-Rh [J]. J. Phys., 2008, 41D: 192004
|
66 |
Manekar M, Roy S B. Very large refrigerant capacity at room temperature with reproducible magnetocaloric effect in Fe0.975Ni0.025Rh [J]. J. Phys., 2011, 44D: 242001
|
67 |
Barua R, Jiménez-Villacorta F, Lewis L H. Towards tailoring the magnetocaloric response in FeRh-based ternary compounds [J]. J. Appl. Phys., 2014, 115: 17A903
|
68 |
Zverev V I, Saletsky A M, Gimaev R R, et al. Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6 [J]. Appl. Phys. Lett., 2016, 108: 192405
|
69 |
Kamantsev A P, Amirov A A, Koshkid􀆳ko Y S,et al. Magnetocaloric effect in alloy Fe49Rh51 in pulsed magnetic fields up to 50 T [J]. Phys. Solid State, 2020, 62: 160
|
70 |
Annaorazov M P, Nikitin S A, Tyurin A L, et al. Anomalously high entropy change in FeRh alloy [J]. J. Appl. Phys., 1996, 79: 1689
|
71 |
Gràcia-Condal A, Stern-Taulats E, Planes A, et al. Caloric response of Fe49Rh51 subjected to uniaxial load and magnetic field [J]. Phys. Rev. Mater., 2018, 2: 084413
|
72 |
Xiao F, Fukuda T, Kakeshita T. Significant elastocaloric effect in a Fe-31.2Pd (at.%) single crystal [J]. Appl. Phys. Lett., 2013, 102: 161914
|
73 |
Xiao F, Jin M J, Liu J, et al. Elastocaloric effect in Ni50Fe19Ga27Co4 single crystals [J]. Acta Mater., 2015, 96: 292
|
74 |
Xiao F, Fukuda T, Kakeshita T, et al. Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe-31.2Pd (at.%) alloy [J]. Acta Mater., 2015, 87: 8
|
75 |
Tanaka Y, Himuro Y, Kainuma R, et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity [J]. Science, 2010, 327: 1488
|
76 |
Omori T, Ando K, Okano M, et al. Superelastic effect in polycrystalline ferrous alloys [J]. Science, 2011, 333: 68
|
77 |
Omori T, Abe S, Tanaka Y, et al. Thermoelastic martensitic transformation and superelasticity in Fe-Ni-Co-Al-Nb-B polycrystalline alloy [J]. Scr. Mater., 2013, 69: 812
|
78 |
Tseng L W, Ma J, Hornbuckle B C, et al. The effect of precipitates on the superelastic response of [100] oriented FeMnAlNi single crystals under compression [J]. Acta Mater., 2015, 97: 234
|
79 |
Krooß P, Somsen C, Niendorf T, et al. Cyclic degradation mechanisms in aged FeNiCoAlTa shape memory single crystals [J]. Acta Mater., 2014, 79: 126
|
80 |
Huang P, Peng H B, Wang S L, et al. Relationship between martensitic reversibility and different nano-phases in a FeMnAlNi shape memory alloy [J]. Mater. Charact., 2016, 118: 22
|
81 |
Hu F X, Shen B G, Sun J R. Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy [J]. Appl. Phys. Lett., 2000, 76: 3460
|
82 |
Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation [J]. Nature, 2006, 439: 957
|
83 |
Krenke T, Duman E, Acet M, et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys [J]. Nat. Mater., 2005, 4: 450
|
84 |
Liu J, Woodcock T G, Scheerbaum N, et al. Influence of annealing on magnetic field-induced structural transformation and magnetocaloric effect in Ni-Mn-In-Co ribbons [J]. Acta Mater., 2009, 57: 4911
|
85 |
Marcos J, Planes A, Mañosa L, et al. Magnetic field induced entropy change and magnetoelasticity in Ni-Mn-Ga alloys [J]. Phys. Rev., 2002, 66B: 224413
|
86 |
Soto-Parra D E, Vives E, González-Alonso D, et al. Stress- and magnetic field-induced entropy changes in Fe-doped Ni-Mn-Ga shape-memory alloys [J]. Appl. Phys. Lett., 2010, 96: 071912
|
87 |
Castillo-Villa P O, Soto-Parra D E, Matutes-Aquino J A, et al. Caloric effects induced by magnetic and mechanical fields in a Ni50Mn25-xGa25Cox magnetic shape memory alloy [J]. Phys. Rev., 2011, 83B: 174109
|
88 |
Huang C H, Wang Y, Tang Z, et al. Influence of atomic ordering on elastocaloric and magnetocaloric effects of a Ni-Cu-Mn-Ga ferromagnetic shape memory alloy [J]. J. Alloys Compd., 2015, 630: 244
|
89 |
Segui C, Torrens-Serra J, Cesari E, et al. Optimizing the caloric properties of Cu-doped Ni-Mn-Ga alloys [J]. Materials, 2020, 13: 419
|
90 |
Li D, Li Z B, Yang J J, et al. Large elastocaloric effect driven by stress-induced two-step structural transformation in a directionally solidified Ni55Mn18Ga27 alloy [J]. Scr. Mater., 2019, 163: 116
|
91 |
Wei L S, Zhang X X, Liu J, et al. Orientation dependent cyclic stability of the elastocaloric effect in textured Ni-Mn-Ga alloys [J]. AIP Adv., 2018, 8: 055312
|
92 |
Wei L S, Zhang X X, Gan W M, et al. Hot extrusion approach to enhance the cyclic stability of elastocaloric effect in polycrystalline Ni-Mn-Ga alloys [J]. Scr. Mater., 2019, 168: 28
|
93 |
Lu B F, Xiao F, Yan A R, et al. Elastocaloric effect in a textured polycrystalline Ni-Mn-In-Co metamagnetic shape memory alloy [J]. Appl. Phys. Lett., 2014, 105: 161905
|
94 |
Lu B F, Zhang P N, Xu Y, et al. Elastocaloric effect in Ni45Mn36.4In13.6Co5 metamagnetic shape memory alloys under mechanical cycling [J]. Mater. Lett., 2015, 148: 110
|
95 |
Zhao D W, Liu J, Feng Y, et al. Giant elastocaloric effect and its irreversibility in [001]-oriented Ni45Mn36.5In13.5Co5 meta-magnetic shape memory alloys [J]. Appl. Phys. Lett., 2017, 110: 021906
|
96 |
Shen Q, Zhao D W, Sun W, et al. The effect of Tb on elastocaloric and mechanical properties of Ni-Mn-In-Tb alloys [J]. J. Alloys Compd., 2017, 696: 538
|
97 |
Yang Z, Cong D Y, Sun X M, et al. Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys [J]. Acta Mater., 2017, 127: 33
|
98 |
Tang X H, Feng Y, Wang H B, et al. Enhanced elastocaloric effect and cycle stability in B and Cu co-doping Ni-Mn-In polycrystals [J]. Appl. Phys. Lett., 2019, 114: 033901
|
99 |
Hernández-Navarro F, Camarillo-Garcia J P, Aguilar-Ortiz C O, et al. The influence of texture on the reversible elastocaloric effect of a polycrystalline Ni50Mn32In16Cr2 alloy [J]. Appl. Phys. Lett., 2018, 112: 164101
|
100 |
Lu B, Song M, Zhou Z, et al. Reducing mechanical hysteresis via tuning the microstructural orientations in Heusler-type Ni44.8Mn36.9In13.3Co5.0 elastocaloric alloys [J]. J. Alloys Compd., 2019, 785: 1023
|
101 |
Huang X M, Wang L D, Liu H X, et al. Correlation between microstructure and martensitic transformation, mechanical properties and elastocaloric effect in Ni-Mn-based alloys [J]. Intermetallics, 2019, 113: 106579
|
102 |
Huang Y J, Hu Q D, Bruno N M, et al. Giant elastocaloric effect in directionally solidified Ni-Mn-In magnetic shape memory alloy [J]. Scr. Mater., 2015, 105: 42
|
103 |
Sun W, Liu J, Lu B F, et al. Large elastocaloric effect at small transformation strain in Ni45Mn44Sn11 metamagnetic shape memory alloys [J]. Scr. Mater., 2016, 114: 1
|
104 |
Shen Y, Sun W, Wei Z Y, et al. Orientation dependent elastocaloric effect in directionally solidified Ni-Mn-Sn alloys [J]. Scr. Mater., 2019, 163: 14
|
105 |
Li Y, Sun W, Zhao D W, et al. An 8 K elastocaloric temperature change induced by 1.3% transformation strain in Ni44Mn45-xSn11-Cux alloys [J]. Scr. Mater., 2017, 130: 278
|
106 |
Millán-Solsona R, Stern-Taulats E, Vives E, et al. Large entropy change associated with the elastocaloric effect in polycrystalline Ni-Mn-Sb-Co magnetic shape memory alloys [J]. Appl. Phys. Lett., 2014, 105: 241901
|
107 |
Qu Y H, Gràcia-Condal A, Mañosa L, et al. Outstanding caloric performances for energy-efficient multicaloric cooling in a Ni-Mn-based multifunctional alloy [J]. Acta Mater., 2019, 177: 46
|
108 |
Cong D Y, Xiong W X, Planes A, et al. Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys [J]. Phys. Rev. Lett., 2019, 122: 255703
|
109 |
Li Y, Zhao D W, Liu J, et al. Energy-efficient elastocaloric cooling by flexibly and reversibly transferring interface in magnetic shape-memory alloys [J]. ACS Appl. Mater. Interfaces, 2018, 10: 25438
|
110 |
Kirsch S M, Welsch F, Michaelis N, et al. NiTi-based elastocaloric cooling on the macroscale: From basic concepts to realization [J]. Energy Technol., 2018, 6: 1567
|
111 |
Kirsch S M, Schmidt M, Welsch F, et al. Development of a shape memory based air conditioning system [A]. 59th Ilmenau Scientific Colloquium [C]. Ilmenau: Technische Universität Ilmenau, 2017
|
112 |
Michaelis N, Welsch F, Kirsch S M, et al. Experimental parameter identification for elastocaloric air cooling [J]. Int. J. Refrig., 2019, 100: 167
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|