Please wait a minute...
金属学报  2020, Vol. 56 Issue (5): 776-784    DOI: 10.11900/0412.1961.2019.00277
  本期目录 | 过刊浏览 |
纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响
李源才, 江五贵(), 周宇
南昌航空大学航空制造工程学院 南昌 330063
Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites
LI Yuancai, JIANG Wugui(), ZHOU Yu
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
引用本文:

李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
Yuancai LI, Wugui JIANG, Yu ZHOU. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. Acta Metall Sin, 2020, 56(5): 776-784.

全文: PDF(2964 KB)   HTML
摘要: 

采用分子动力学方法研究了预制纳米孔洞缺陷对单晶/多晶Ni复合体拉伸性能的影响。结果表明,与多晶Ni相比,单晶Ni能够提高单晶/多晶Ni复合体的抗拉强度。对比了孔洞位置分布对单晶/多晶Ni复合体拉伸性能的影响。模拟结果表明,处于单晶区域的纳米孔洞缺陷显著加剧了单晶/多晶Ni复合体界面的断裂。相反,孔洞处于多晶区域时,界面一侧的单晶Ni阻碍了多晶Ni侧非晶化的传播,抑制了孔洞向界面一侧的单晶扩展。随后讨论了界面孔洞的孔隙率对单晶/多晶Ni复合体拉伸性能的影响。结果表明,当孔隙率超过0.8%后,单晶/多晶Ni复合体的抗拉强度迅速下降。最后分析了当保持界面孔洞孔隙率不变的情况下空洞数量对拉伸性能的影响,结果显示,相比于大孔洞,分散的小孔洞具有更好的拉伸性能。

关键词 分子动力学预制纳米孔洞单晶/多晶Ni复合体拉伸性能孔洞位置孔隙率    
Abstract

The performance of the new generation aero-engine is strongly dependent on the application of integral blisk technologies, while the high-risk failure of integral disk joints severely restricts the promotion of those technologies. Therefore, the molecular dynamics method is used to investigate the influence of nanopores on the tensile properties of single crystal/polycrystalline Ni composites. The results show that the addition of single crystal nickel can increase the tensile strength of single crystal/polycrystalline Ni compared with polycrystalline nickel. The influence of pore position distribution on the tensile properties of single crystal/polycrystalline Ni is investigated. The simulation results show that nanopore defects in a single crystal region significantly aggravate the fracture at the single crystal/polycrystalline Ni interface. Pores not only penetrate the interface of composites but also rapidly expand inside the single crystal and the polycrystalline crystal, in which the interface of composites is further reduced resulting in the failure acceleration of single crystal/polycrystalline Ni composites. On the contrary, when the pores are in a polycrystalline region, the interface of single crystal/polycrystalline Ni hinders the amorphization of the polycrystalline nickel side and inhibits the pores from spreading toward the interface. When the pores are in the interface region, the pores do not continue to expand into the single crystal, but propagate inside the polycrystalline crystal. The effect of the porosity of interface pores on the tensile properties of single crystal/polycrystalline Ni is also discussed. It is found that the tensile strengthof single crystal/polycrystalline Ni decreases rapidly when the void porosity exceeds 0.8%. Finally, the influence of the number of voids on the tensile properties while maintaining the porosity of the interface pores is analyzed. When the porosity of the prefabricated pores of the interface is kept constant at 0.8%, the larger the number of pores (i.e., the smaller the pores), the larger the elastic modulus. In the plastic deformation stage, due to the large number of dispersed small pore structures at the interface of the single crystal/polycrystalline Ni composites, the dislocation motion is hindered, which plays a certain strengthening role and improves the tensile strength of the single crystal/polycrystalline Ni composites. It can be concluded that single crystal/polycrystalline Ni with dispersed small pores has better tensile properties than those with large pores.

Key wordsmolecular dynamics    prefabricated nanopore    single crystal/polycrystalline Ni composites    tensile property    pore location    porosity
收稿日期: 2019-08-19     
ZTFLH:  TB31  
基金资助:国家自然科学基金项目(11772145)
作者简介: 李源才,男,1987年生,硕士生
图1  单晶Ni和多晶Ni分子动力学模型及单晶/多晶Ni复合体预制孔洞示意图(预制孔洞中心相距d=4、8或10 nm)
图2  无预制孔洞与孔洞半径为1.1 nm时不同晶态Ni应力-应变曲线
图3  无预制孔洞和不同位置预制孔洞单晶/多晶Ni复合体的拉伸应力-应变曲线
图4  不同应变(ε)下单晶预制孔洞半径为0.6 nm,多晶预制孔洞半径为0.5 nm和单晶/多晶界面预制孔洞半径为0.6 nm的拉伸原子图
图5  无预制孔洞和不同界面预制孔洞数量(N)下单晶/多晶Ni复合体的应力-应变曲线和弹性模量变化曲线
图6  不同应变下单晶/多晶Ni复合体界面预制孔洞半径为0.5848 nm时的拉伸原子图
图7  不同应变下单晶/多晶Ni复合体径向分布函数(G(r))
1 Liu G Y. Molecular dynamics simulation of hole tensile deformation in nanocrystalline copper [J]. J. At. Mol. Phys., 2004, 21(Suppl.): 377
1 刘光勇. 纳米单晶铜中孔洞拉伸变形的分子动力学模拟 [J]. 原子与分子物理学报, 2004, 21(增刊): 377
2 Zhang N. Molecular dynamic simulation on mechanical behavior of nano-bicrystal copper under uniaxial tension [D]. Wuhan: Huazhong University of Science and Technology, 2008
2 张 宁. 纳米双晶铜单向拉伸力学行为的分子动力学模拟 [D]. 武汉: 华中科技大学, 2008
3 Yang X H, Zhou T, Chen C Y. Effective elastic modulus and atomic stress concentration of single crystal nano-plate with void [J]. Comput. Mater. Sci., 2007, 40: 51
4 Liu T, Deng Q, Liu Y, et al. Strength analysis of an aero engine blisk [J]. Mech. Res., Appl., 2015, 28(4): 94
4 刘 涛, 邓 强, 刘 源等. 某型航空发动机整体叶盘强度分析 [J]. 机械研究与应用, 2015, 28(4): 94
5 Qin D S, Chen B Y, Sun J N. Numerical simulation on the enhanced heat transfer effects of the blisk to the blades and disk in the turbine [J]. Tactical Missile Technol., 2015, (2): 49
5 秦德胜, 陈宝延, 孙纪宁. 整体叶盘对涡轮叶盘间传热强化的数值研究 [J]. 战术导弹技术, 2015, (2): 49
6 Peng X J, Zhu W J, Chen K G, et al. Molecular dynamics simulations of void coalescence in monocrystalline copper under loading and unloading [J]. J. Appl. Phys., 2016, 119: 165901
7 Rui Z Y, Cao H, Luo D C, et al. Effect of hole size on single crystal γ-TiAl alloy crack propagation based on molecular dynamics simulation [J]. Rare Met. Mater. Eng., 2017, 46: 2505
7 芮执元, 曹 卉, 罗德春等. 单晶γ-TiAl中孔洞尺寸对裂纹扩展影响的分子动力学模拟 [J]. 稀有金属材料与工程, 2017, 46: 2505
8 Luo D C, Zhang L, Fu R, et al. Molecular dynamics simulation of nano single crystal gamma-TiAl alloy strain rate effect [J]. Rare Met. Mater. Eng., 2018, 47: 853
8 罗德春, 张 玲, 付蓉等. 纳米单晶γ-TiAl合金应变速率效应分子动力学模拟 [J]. 稀有金属材料与工程, 2018, 47: 853
9 Shang J, Yang F, Li C, et al. Size effect on the plastic deformation of pre-void Ni/Ni3Al interface under uniaxial tension: A molecular dynamics simulation [J]. Comput. Mater. Sci., 2018, 148: 200
10 Zhu P Z, Hu Y Z, Wang H. Atomistic simulations of the effect of a void on nanoindentation response of nickel [J]. Sci. China Phys. Mech. Astron., 2010, 53: 1716
11 Ito A, Okamoto S. Tensile and shearing properties of vacancy-containing graphene using molecular dynamics simulations [J]. J. Commun. Comput., 2013, 10: 9
12 Yang B, Zheng B L, Hu X J, et al. Effect of void on nanoindentation process of Ni-based single crystal alloy [J]. Acta Metall. Sin., 2016, 52: 129
12 杨 彪, 郑百林, 胡兴健等. 空洞对镍基单晶合金纳米压痕过程的影响 [J]. 金属学报, 2016, 52: 129
13 Guo J X, Wang B, Yang Z Y. Molecular dynamics simulations on the mechanical properties of graphene/Cu composites [J]. Acta Mater. Compos. Sin., 2014, 31: 152
13 郭俊贤, 王 波, 杨振宇. 石墨烯/Cu复合材料力学性能的分子动力学模拟 [J]. 复合材料学报, 2014, 31: 152
14 Hua J, Song C, Duan Z R, et al. Molecular dynamics simulations of the shear mechanical properties of graphene/copper composites [J]. Acta Mater. Compos. Sin., 2018, 35: 632
14 华 军, 宋 郴, 段志荣等. 石墨烯/铜复合材料剪切性能的分子动力学模拟 [J]. 复合材料学报, 2018, 35: 632
15 Borg U, Niordson C F, Kysar J W. Size effects on void growth in single crystals with distributed voids [J]. Int. J. Plast., 2008, 24: 688
16 Stewart D, Cheong K S. Molecular dynamics simulations of dislocations and nanocrystals [J]. Curr. Appl. Phys., 2008, 8: 494
17 Huang M S, Li Z H, Wang C. Discrete dislocation dynamics modelling of microvoid growth and its intrinsic mechanism in single crystals [J]. Acta Mater., 2007, 55: 1387
18 Prithivirajan V, Sangid M D. The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity [J]. Mater. Des., 2018, 150: 139
19 Ruestes C J, Bringa E M, Stukowski A, et al. Atomistic simulation of the mechanical response of a nanoporous body-centered cubic metal [J]. Scr. Mater., 2013, 68: 817
20 Horstemeyer M F, Farkas D, Kim S, et al. Nanostructurally small cracks (NSC): A review on atomistic modeling of fatigue [J]. Int. J. Fatigue, 2010, 32: 1473
21 Yuan F P, Wu X L. Scaling laws and deformation mechanisms of nanoporous copper under adiabatic uniaxial strain compression [J]. AIP Adv., 2014, 4: 127109
22 Cao A J, Wei Y G. Atomistic simulations of crack nucleation and intergranular fracture in bulk nanocrystalline nickel [J]. Phys. Rev., 2007, 76B: 024113
23 Yi L J, Chang T C, Feng X Q, et al. Giant energy absorption capacity of graphene-based carbon honeycombs [J]. Carbon, 2017, 118: 348
24 Zhou Y, Jiang W G, Feng X Q, et al. In-plane compressive behavior of graphene-coated aluminum nano-honeycombs [J]. Comput. Mater. Sci., 2019, 156: 396
25 Wen Y H, Zhu Z Z, Zhu R Z. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects [J]. Comput. Mater. Sci., 2008, 41: 553
26 Zhou Y, Jiang W G, Li D S, et al. Study on lightweight and strengthening effect of carbon nanotube in highly ordered nanoporous nickel: A molecular dynamics study [J]. Appl. Sci., 2019, 9: 352
27 Mishin Y, Farkas D, Mehl M J, et al. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations [J]. Phys. Rev., 1999, 59B: 3393
28 Ackland G J, Tichy G, Vitek V, et al. Simple N-body potentials for the noble metals and nickel [J]. Philos. Mag., 1987, 56A: 735
29 Chang L, Zhou C Y, Wen L L, et al. Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire [J]. Comput. Mater. Sci., 2017, 128: 348
30 Ma B, Rao Q H, He Y H. Molecular dynamics simulation of temperature effect on tensile mechanical properties of single crystal tungsten nanowire [J]. Comput. Mater. Sci., 2016, 117: 40
31 Shi G J, Wang J G, Hou Z Y, et al. Simulation study of the effect of strain rate on the mechanical properties and tensile deformation of gold nanowire [J]. Mod. Phys. Lett., 2017, 31B: 1750247
32 Gao A, Mukherjee S, Srivastava I, et al. Atomistic origins of ductility enhancement in metal oxide coated silicon nanowires for Li‐ion battery anodes [J]. Adv. Mater. Interfaces, 2017, 4: 1700920
33 Cheng Q, Wu H A, Wang Y, et al. Pseudoelasticity of Cu-Zr nanowires via stress-induced martensitic phase transformations [J]. Appl. Phys. Lett., 2009, 95: 021911
doi: 10.1063/1.3183584
34 Zheng M. Molecular dynamics simulation of tensile mechanical properties and defect behavior of metal-single crystal [D]. Nanjing: Nanjing University of Science and Technology, 2007
34 郑 茂. 金属单晶拉伸力学性能及缺陷行为的分子动力学模拟 [D]. 南京: 南京理工大学, 2007
[1] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[2] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[3] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[4] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[5] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[8] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[9] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[10] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[11] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[12] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[13] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[14] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[15] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.