Please wait a minute...
金属学报  2019, Vol. 55 Issue (8): 1034-1040    DOI: 10.11900/0412.1961.2019.00041
  本期目录 | 过刊浏览 |
含水条件下单晶Cu的应力松弛及弹性恢复
史俊勤1,孙琨2,方亮2,许少锋3()
1. 西安稀有金属材料研究院有限公司 西安 710016
2. 西安交通大学金属材料强度国家重点实验室 西安 710049
3. 浙江大学宁波理工学院 宁波 315000
Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment
Junqin SHI1,Kun SUN2,Liang FANG2,Shaofeng XU3()
1. Xi’an Rare Metal Materials Institute Co. , Ltd. , Xi’an 710016, China
2. State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
3. Ningbo Institute of Technology, Zhejiang University, Ningbo 315000, China
全文: PDF(8286 KB)   HTML
摘要: 

采用分子动力学方法研究了不同含水条件下单晶Cu纳米压入过程中的应力松弛和弹性恢复行为。结果表明,恒定变形量下单晶Cu承受的应力减小,发生应力松弛现象,水膜存在时单晶Cu的应力松弛量大于无水情况。纳米压入过程中Cu原子间距随压入深度增加而快速减小,应力松弛阶段Cu原子间的最邻近距离未有明显变化,卸载初期Cu原子间距因变形区域弹性能及位错能的释放而迅速增大。含水条件下单晶Cu内部形成的位错明显多于无水情况,说明不可恢复性变形量因水膜的出现而加剧;卸载结束时部分变形得以释放,促进了部分位错消失,水膜的存在阻碍了弹性恢复和塑性变形的释放。

关键词 应力松弛弹性恢复单晶Cu分子动力学    
Abstract

The stress relaxation and elastic recovery have an important effect on the mechanical and electrical properties of metallic crystal materials, which restricts the range of application and working life of materials. However, during plastic deformation of materials, the relaxation and elastic recovery behaviors are still not very clear at the nanoscale. In this work, the stress relaxation and elastic recovery of monocrystalline Cu under water environment is studied by molecular dynamics simulation. The results indicate the stress acting on Cu surface decreases at constant strain, meaning the occurrence of stress relaxation phenomenon. The stress relaxation increases with water film thickening compared with no-water environment. The separation between Cu atoms dramatically decreases with the increasing indentation depth at indenting stage, and there is no clear change in the nearest interatomic separation at stress relaxation stage, but the separation increases rapidly due to the release of elastic energy and dislocation energy at the unloading stage. The nucleated dislocations within Cu coated by water film are obviously more than that without water, which suggests the water film increases the unrecovered deformation in the total nanoindentation process. During unloading, partial dislocations disappear because of the deformation energy release, while the water film impedes the elastic recovery and plastic release.

Key wordsstress relaxation    elastic recovery    monocrystalline Cu    molecular dynamics
收稿日期: 2019-02-20     
ZTFLH:  TG14  
基金资助:国家自然科学基金青年科学基金项目((No.51605432));浙江省自然科学基金青年科学基金项目((No.LQ16E050007));宁波市自然科学基金项目((No.2015A610097))
通讯作者: 许少锋     E-mail: 10925066@zju.edu.cn
Corresponding author: Shaofeng XU     E-mail: 10925066@zju.edu.cn
作者简介: 史俊勤,男,1987年生,博士

引用本文:

史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
Junqin SHI, Kun SUN, Liang FANG, Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment. Acta Metall Sin, 2019, 55(8): 1034-1040.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00041      或      https://www.ams.org.cn/CN/Y2019/V55/I8/1034

图1  含水条件下的单晶Cu纳米压入初始模型

Atom pair

ε

kJ·mol-1

δ

nm

Cutoff distance
nm
O—O0.6505[32]0.31655[30]0.6
Cu—O1.1335[30,31]0.28877[30,31]0.5
C—O0.4186[32]0.32750[32]0.5
表1  TIP4P和Lennard-Jones势函数参数[30,31,32]
图2  纳米压痕位移控制示意图
图3  无水膜及水膜厚度为1.0、2.0、3.0 nm时单晶Cu的载荷-压深曲线
图4  不同水环境下单晶Cu的纳米压入区域最邻近Cu原子间距变化
图5  无水膜及水膜厚度为1.0、2.0、3.0 nm时压头卸载前(橙色)后(蓝色)单晶Cu切片构型图
图6  无水膜及水膜厚度为1.0、2.0、3.0 nm时纳米压入过程结束(左)、应力松弛后(中)及卸载结束后(右)压痕区域的缺陷构型
[1] Jin Y, Wei N. Research on stress relaxation of metals at elevated temperature [J]. J. Mechan. Strength, 1997, 19(3): 57
[1] (金 尧, 魏 楠. 金属高温应力松弛行为研究 [J]. 机械强度, 1997, 19(3): 57)
[2] Guiu F, Pratt P L. Stress relaxation and the plastic deformation of solids [J]. Phys. Status Solidi., 1964, 6B: 111
[3] Zhan L H, Wang M, Huang M H. Prediction model for aging stress-relaxation behavior based on creep equations [J]. J. Mechan. Eng., 2013, 49(10): 70
[3] (湛利华, 王 萌, 黄明辉. 基于蠕变公式的时效应力松弛行为预测模型 [J]. 机械工程学报, 2013, 49(10): 70)
[4] Gooch J W. Elastic Recovery [M]. New York: Springer, 2011: 213
[5] Peng Z J, Wen T, Gong J H, et al. Relationship between the ratio of Young's modulus to hardness and the elastic recovery of nanoindentation [J]. Key Eng. Mater., 2012, 492: 5
[6] Li Z H, Li Y F, Zhang C L, et al. Creep and stress relaxation in free-standing thin metal films controlled by coupled surface and grain boundary diffusion [J]. Acta Mater., 2012, 60: 3057
[7] Gurewitz G, Atzmon N, Rosen A. Creep and stress relaxation in 18% Ni (250) maraging steel [J]. Met. Sci. J., 1977, 4: 62
[8] Torres M A S, Voorwald H J C. An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel [J]. Int. J. Fatigue, 2002, 24: 877
[9] Gedeon M. Factors affecting stress relaxation and creep [J]. Technical TDBITS, 2010, 13: 1
[10] Blonski S, Brostow W, Kubát J. Molecular-dynamics simulations of stress relaxation in metals and polymers [J]. Phys. Rev., 1994, 49B: 6494
[11] Makeev M A, Kalia R K, Nakano A, et al. Effect of geometry on stress relaxation in InAs /GaAs rectangular nanomesas: Multimillion-atom molecular dynamics simulations [J]. J. Appl. Phys., 2005, 98: 114313
[12] Lane J M D. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dynamics [J]. Phys. Rev., 2015, 92E: 012320
[13] Dong L, Schnitker J, Smith R W, et al. Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: A molecular dynamics simulation study [J]. J. Appl. Phys., 1998, 83: 217
[14] Lau T T, Kushima A, Yip S. Atomistic simulation of creep in a nanocrystal [J]. Phys. Rev. Lett., 2010, 104: 175501
[15] Brostow W, Kubát J. Molecular-dynamics simulation of stress relaxation on a triangular lattice [J]. Phys. Rev., 1993, 47B: 7659
[16] Li Q K, Zhang Y, Chu W Y. Molecular dynamics simulation of plastic deformation during nanoindentation [J]. Acta Metall. Sin., 2004, 40: 1238
[16] (李启楷, 张 跃, 褚武杨. 纳米压痕形变过程的分子动力学模拟 [J]. 金属学报, 2004, 40: 1238)
[17] Zhu Y, Zhang Y C, Qi S H, et al. Titanium nanometric cutting process based on molecular dynamics [J]. Rare Met. Mater. Eng., 2016, 45: 897
[17] (朱 瑛, 张银成, 齐顺河等. 基于分子动力学的金属钛纳米切削过程研究 [J]. 稀有金属材料与工程, 2016, 45: 897)
[18] Wang C H, Fang T H, Cheng P C, et al. Simulation and experimental analysis of nanoindentation and mechanical properties of amorphous NiAl alloys [J]. J. Mol. Model., 2015, 21: 161
[19] Fang L, Sun K, Shi J Q, et al. Movement patterns of ellipsoidal particles with different axial ratios in three-body abrasion of monocrystalline copper: A large scale molecular dynamics study [J]. RSC Adv., 2017, 7: 26790
[20] Thouless M D, Gupta J, Harper J M E. Stress development and relaxation in copper films during thermal cycling [J]. J. Mater. Res., 1993, 8: 1845
[21] Taub A I, Luborsky F E. Creep, stress relaxation and structural change of amorphous alloys [J]. Acta Metall., 1981, 29: 1939
[22] Gupta I, Li J C M. Stress relaxation, internal stress, and work hardening in some bcc metals and alloys [J]. Metall. Trans., 1970, 1: 2323
[23] Bao Y W, Zhou Y C. Evaluating high-temperature modulus and elastic recovery of Ti3SiC2 and Ti3AlC2 ceramics [J]. Mater. Lett., 2003, 57: 4018
[24] Shi J Q, Zhang Y N, Sun K, et al. Effect of water film on the plastic deformation of monocrystalline copper [J]. RSC Adv., 2016, 6: 96824
[25] Shi J Q, Chen J, Sun K, et al. Water film facilitating plastic deformation of Cu thin film under different nanoindentation modes: A molecular dynamics study [J]. Mater. Chem. Phys., 2017, 198: 177
[26] Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev., 1984, 29B: 6443
[27] Daw M S, Foiles S M, Baskes M I. The embedded-atom method: A review of theory and applications [J]. Mater. Sci. Rep., 1993, 9: 251
[28] Girifalco L A, Weizer V G. Application of the Morse potential function to cubic metals [J]. Phys. Rev., 1959, 114: 687
[29] Ren J Q, Zhao J S, Dong Z G, et al. Molecular dynamics study on the mechanism of AFM-based nanoscratching process with water-layer lubrication [J]. Appl. Surf. Sci., 2015, 346: 84
[30] Boda D, Henderson D. The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture [J]. Mol. Phys., 2008, 106: 2367
[31] Al-Matar A K, Rockstraw D A. A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters [J]. J. Comput. Chem., 2004, 25: 660
[32] Werder T, Walther J H, Jaffe R L, et al. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes [J]. J. Phys. Chem., 2003, 107B: 1345
[1] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[2] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[3] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[4] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[5] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[6] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[7] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[8] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[9] 王瑾, 余黎明, 李冲, 黄远, 李会军, 刘永长. 不同温度对含与不含位错α-Fe中He原子行为的影响[J]. 金属学报, 2019, 55(2): 274-280.
[10] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[11] 赵鹏越, 郭永博, 白清顺, 张飞虎. 基于微观结构的多晶Cu纳米压痕表面缺陷研究[J]. 金属学报, 2018, 54(7): 1051-1058.
[12] 樊丹丹, 许军锋, 钟亚男, 坚增运. 过热温度和冷却速率对过冷Ti熔体凝固过程的影响[J]. 金属学报, 2018, 54(6): 844-850.
[13] 何卫锋, 李翔, 聂祥樊, 李应红, 罗思海. 钛合金薄壁构件激光冲击残余应力稳定性研究[J]. 金属学报, 2018, 54(3): 411-418.
[14] 王瑾, 余黎明, 黄远, 李会军, 刘永长. 晶体取向和He浓度对bcc-Fe裂纹扩展行为的影响[J]. 金属学报, 2018, 54(1): 47-54.
[15] 郭廷彪, 李琦, 王晨, 张锋, 贾智. 单晶Cu等通道转角挤压A路径形变特征及力学性能[J]. 金属学报, 2017, 53(8): 991-1000.