|
|
碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究 |
覃嘉宇1,2,李小强1,2,金培鹏1,2,王金辉1,2,朱云鹏1,2,3( ) |
1. 青海大学新型轻合金省重点实验室 西宁 810016 2. 青海大学青海省轻金属合金及深加工工程技术研究中心 西宁 810016 3. 清华大学机械工程学院 北京 100084 |
|
Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite |
QIN Jiayu1,2,LI Xiaoqiang1,2,JIN Peipeng1,2,WANG Jinhui1,2,ZHU Yunpeng1,2,3( ) |
1. Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai University, Xining 810016, China 2. Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming, Qinghai University, Xining 810016, China 3. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China |
引用本文:
覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
QIN Jiayu,
LI Xiaoqiang,
JIN Peipeng,
WANG Jinhui,
ZHU Yunpeng.
Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite[J]. Acta Metall Sin, 2019, 55(12): 1537-1543.
[1] | Mordike B L, Ebert T. Magnesium: Properties-applications-potential [J]. Mater. Sci. Eng., 2001, A302: 37 | [2] | Froes F H, Eliezer D, Aghion E. The science, technology, and applications of magnesium [J]. JOM, 1998, 50(9): 30 | [3] | Ishihara S, Nan Z Y, Goshima T. Effect of microstructure on fatigue behavior of AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2007, A468-470: 214 | [4] | Le Q C, Zhang Z Q, Shao Z W, et al. Microstructures and mechanical properties of Mg-2%Zn-0.4%RE alloys [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: s352 | [5] | Gao S Y, Le Q C, Zhang Z Q, et al. Effects of Al-Al4C3 refiner and ultrasonic field on microstructures of pure Mg [J]. Acta Metall. Sin., 2010, 46: 1495 | [5] | (高声远, 乐启炽, 张志强等. Al-Al4C3细化剂和超声场对纯Mg组织的影响 [J]. 金属学报, 2010, 46: 1495) | [6] | Li X, Qi W, Zheng K, et al. Enhanced strength and ductility of Mg-Gd-Y-Zr alloys by secondary extrusion [J]. J. Magn. Alloy, 2013, 1: 54 | [7] | Muhammad R, Pan F S, Tang A T, et al. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium [J]. J. Alloys Compd., 2014, 603: 111 | [8] | Guo X L, Guo Q, Nie J H, et al. Particle size effect on the interfacial properties of SiC particle-reinforced AlCu-Mg composites [J]. Mater. Sci Eng., 2018, A711: 643 | [9] | Zhu Y P, Jin P P, Fei W D, et al. Effects of Mg2B2O5 whiskers on microstructure and mechanical properties of AZ31B magnesium matrix composites [J]. Mater. Sci. Eng., 2017, A684: 205 | [10] | Li X Q, Ma G J, Jin P P, et al. Microstructure and mechanical properties of the ultra-fine grained ZK60 reinforced with low content of nano-diamond by powder metallurgy [J]. J. Alloys Compd., 2019, 778: 309 | [11] | Cao G, Choi H, Oportus J, et al. Study on tensile properties and microstructure of cast AZ91D/AlN nanocomposites [J]. Mater. Sci. Eng., 2008, A494: 127 | [12] | Xiao P, Gao Y M, Yang C C, et al. Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles [J]. Mater. Sci. Eng., 2018, A710: 251 | [13] | Rezayat M, Parsa M H, Mirzadeh H, et al. Dynamic deformation response of Al-Mg and Al-Mg/B4C composite at elevated temperatures [J]. Mater. Sci. Eng., 2018, A712: 645 | [14] | Yuan Q H, Zeng X S, Liu Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO [J]. Carbon, 2016, 96: 843 | [15] | Sahoo B N, Panigrahi S K. Deformation behavior and processing map development of AZ91 Mg alloy with and without addition of hybrid in-situ TiC+TiB2 reinforcement [J]. J. Alloys Compd., 2019, 776: 865 | [16] | Popov V N. Carbon nanotubes: Properties and application [J]. Mater. Sci. Eng., 2004, R43: 61 | [17] | De Volder M F L, Tawfick S H, Baughman R H, et al. Carbon Nanotubes: Present and future commercial applications [J]. Science, 2013, 339(6119): 535 | [18] | Liang J H, Li H J, Qi L H, et al. Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion [J]. J. Alloys Compd., 2017, 728: 282 | [19] | Zhao F Z, Feng X H, Yang Y S. Microstructure and mechanical properties of CNT-reinforced AZ91D composites fabricated by ultrasonic processing [J]. Acta Metall. Sin., 2016, 29: 652 | [20] | Han G Q, Wang Z H, Liu K, et al. Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs [J]. Mater. Sci. Eng., 2015, A628: 350 | [21] | Shi H L, Wang X J, Li C D, et al. A novel method to fabricate CNT/Mg-6Zn composites with high strengthening efficiency [J]. Acta Metall. Sin. (Eng. Lett.), 2014, 27: 909 | [22] | Sun K, Shi Q Y, Sun Y J, et al. Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing [J]. Mater. Sci. Eng., 2012, A547: 32 | [23] | Wang M, Zhao Y, Wang L D, et al. Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process [J]. Carbon, 2018, 139: 954 | [24] | Wang X J, Xiang Y Y, Hu X S, et al. Recent progress on magnesium matrix composites reinforced by carbonaceous nanomaterials [J]. Acta Metall. Sin., 2019, 55: 73 | [24] | (王晓军, 向烨阳, 胡小石等. 碳纳米材料增强镁基复合材料研究进展 [J]. 金属学报, 2019, 55: 73) | [25] | Rashad M, Pan F S, Hu H H, et al. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets [J]. Mater. Sci. Eng., 2015, A630: 36 | [26] | Zeng X S, Zhou G H, Xu Q, et al. A new technique for dispersion of carbon nanotube in a metal melt [J]. Mater. Sci. Eng., 2010, A527: 5335 | [27] | Fan G L, Jiang Y, Tan Z Q, et al. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy [J]. Carbon, 2018, 130: 333 | [28] | Garcés G, Rodríguez M, Pérez P, et al. High temperature mechanical properties of Mg-Y2O3 composite: Competition between texture and reinforcement contributions [J]. Compos. Sci. Technol., 2007, 67: 632 | [29] | Chao H Y, Yang Y, Wang X, et al. Effect of grain size distribution and texture on the cold extrusion behavior and mechanical properties of AZ31 Mg alloy [J]. Mater. Sci. Eng., 2011, A528: 3428 | [30] | Ding H L, Liu L F, Kamado S, et al. Study of the microstructure, texture and tensile properties of as-extruded AZ91 magnesium alloy [J]. J. Alloys Compd., 2008, 456: 400 | [31] | Garcés G, Pérez P, Adeva P. Effect of the extrusion texture on the mechanical behaviour of Mg-SiCp composites [J]. Scr. Mater., 2005, 52: 615 | [32] | Li X, Jiao F, Al-Samman T, et al. Influence of second-phase precipitates on the texture evolution of Mg-Al-Zn alloys during hot deformation [J]. Scr. Mater., 2012, 66: 159 | [33] | Li C D, Wang X J, Liu W Q, et al. Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite [J]. Mater. Sci. Eng., 2014, A597: 264 | [34] | Zhao Z D, Chen Q, Wang Y B, et al. Microstructures and mechanical properties of AZ91D alloys with Y addition [J]. Mater. Sci. Eng., 2009, A515: 152 | [35] | Meng L L, Wang X J, Ning J L, et al. Beyond the dimensional limitation in bio-inspired composite: Insertion of carbon nanotubes induced laminated Cu composite and the simultaneously enhanced strength and toughness [J]. Carbon, 2018, 130: 222 | [36] | Jiang L, Li Z Q, Fan G L, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution [J]. Carbon, 2012, 50: 1993 | [37] | Yuan Q H, Zeng X S, Liu Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO [J]. Carbon, 2016, 96: 843 | [38] | Zhang Z, Chen D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength [J]. Scr. Mater., 2006, 54: 1321 | [39] | Sanaty-Zadeh A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect [J]. Mater. Sci. Eng., 2012, A531: 112 | [40] | Shin S E, Choi H J, Shin J H, et al. Strengthening behavior of few-layered graphene/aluminum composites [J]. Carbon, 2015, 82: 143 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|