Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1537-1543    DOI: 10.11900/0412.1961.2019.00173
  研究论文 本期目录 | 过刊浏览 |
碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究
覃嘉宇1,2,李小强1,2,金培鹏1,2,王金辉1,2,朱云鹏1,2,3()
1. 青海大学新型轻合金省重点实验室 西宁 810016
2. 青海大学青海省轻金属合金及深加工工程技术研究中心 西宁 810016
3. 清华大学机械工程学院 北京 100084
Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite
QIN Jiayu1,2,LI Xiaoqiang1,2,JIN Peipeng1,2,WANG Jinhui1,2,ZHU Yunpeng1,2,3()
1. Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai University, Xining 810016, China
2. Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming, Qinghai University, Xining 810016, China
3. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(8520 KB)   HTML
摘要: 

采用低温粉末冶金及热挤压工艺制备了具有超细晶组织的0.1%CNTs/AZ91 (质量分数)镁基复合材料。通过SEM、XRD、TEM对镁基复合材料的微观组织进行了表征,并对其室温力学性能进行测试。结果表明:CNTs在复合材料中分布均匀,CNTs的加入使得复合材料的晶粒尺寸从0.552 μm细化到0.346 μm,并促进了β相的析出,同时弱化了基面织构。复合材料的抗压强度和屈服强度分别达到了617和445 MPa,较基体提高了8.8%和7.2%;其抗拉强度和屈服强度分别达到了393和352 MPa,与基体相比分别提高了4.5%和6.0%。对强化机制进行分析,发现细晶强化和载荷传递是0.1%CNTs/AZ91复合材料的主要强化机制。

关键词 镁基复合材料低温粉末冶金显微组织力学性能强化机制    
Abstract

Magnesium alloys are well known for their low density, high specific strength. However, they are often limited by unsatisfactory mechanical properties. To meet the challenge of growing demand for light structural applications, metal matrix composites (MMCs) have attracted more attention. Carbon nanotubes (CNTs) have attracted much attention as the ideal reinforcements for MMCs due to their excellent mechanical strength and Young's modulus. In this work, 0.1%CNTs/AZ91 (mass fraction) magnesium matrix composites were prepared by low temperature powder metallurgy and hot extrusion. The magnesium alloy and composites were observed and analyzed by SEM, XRD and TEM. The room temperature mechanical properties of the composites were tested by Instron 5982 machine. The results showed that the CNTs distributed uniformly in the composites. The CNTs have an effect on reducing grain size, promoting precipitation of β-Mg17Al12 and weakening basal texture. The compressive strength and yield strength of the composites reached 617 and 445 MPa, which increased by 8.8% and 7.2%, respectively. The tensile strength and yield strength were 393 and 352 MPa, which 4.5% and 6.0% MPa higher than the matrix, respectively. It can be found that fine grain strengthening and load transfer play a leading role in improving the strength in the 0.1%CNTs/AZ91 magnesium matrix composites.

Key wordsmagnesium matrix composite    low temperature powder metallurgy    microstructure    mechanical property    strengthening mechanism
收稿日期: 2019-05-31     
ZTFLH:  TB333  
基金资助:国家自然科学基金项目(No.51661028);青海省重大科技专项项目(No.2018-GX-A1)
通讯作者: 朱云鹏     E-mail: zhu-yp@qhu.edu.cn
Corresponding author: Yunpeng ZHU     E-mail: zhu-yp@qhu.edu.cn
作者简介: 覃嘉宇,男,1995年生,硕士生

引用本文:

覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
QIN Jiayu, LI Xiaoqiang, JIN Peipeng, WANG Jinhui, ZHU Yunpeng. Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite. Acta Metall Sin, 2019, 55(12): 1537-1543.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00173      或      https://www.ams.org.cn/CN/Y2019/V55/I12/1537

图1  AZ91镁合金粉末和CNTs微观组织
图2  CNTs、AZ91及0.1%CNTs/AZ91复合材料的XRD谱
图3  挤压态AZ91基体合金和0.1%CNTs/AZ91复合材料的TEM像及晶粒尺寸分布
图4  CNTs及Mg17Al12在0.1%CNTs/AZ91复合材料中的分布及界面微观组织
图5  挤压态AZ91基体合金和0.1%CNTs/AZ91复合材料的{0001}面和{101ˉ0}面宏观织构
图6  挤压态AZ91合金及0.1%CNTs/AZ91复合材料的室温压缩性能和室温拉伸性能

Material

Tensile

R

CompressiveRef.
σb / MPaσ0.2 / MPaδ / %σbc / MPaσ0.2 / MPaδ / %

0.6%(CNTs+GNPs)/

Mg-1Al

234

185

16.4

26.4

-

-

-

[7]

1%AlN/AZ911681447.632.4---[11]
1%CNTs/AZ9138927812.830.3---[18]
0.5%CNTs/AZ91230129813.9---[19]
1%CNTs/Mg-6Zn3212091725.5---[33]
2Y/AZ91323.1216.914.35.1---[34]
AZ9137633210.3-56741514.2This work
0.1%CNTs/AZ913933529.344.6861744515.5This work
表1  相关镁基复合材料室温力学性能[7,11,18,19,33,34]
[1] Mordike B L, Ebert T. Magnesium: Properties-applications-potential [J]. Mater. Sci. Eng., 2001, A302: 37
[2] Froes F H, Eliezer D, Aghion E. The science, technology, and applications of magnesium [J]. JOM, 1998, 50(9): 30
[3] Ishihara S, Nan Z Y, Goshima T. Effect of microstructure on fatigue behavior of AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2007, A468-470: 214
[4] Le Q C, Zhang Z Q, Shao Z W, et al. Microstructures and mechanical properties of Mg-2%Zn-0.4%RE alloys [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: s352
[5] Gao S Y, Le Q C, Zhang Z Q, et al. Effects of Al-Al4C3 refiner and ultrasonic field on microstructures of pure Mg [J]. Acta Metall. Sin., 2010, 46: 1495
[5] (高声远, 乐启炽, 张志强等. Al-Al4C3细化剂和超声场对纯Mg组织的影响 [J]. 金属学报, 2010, 46: 1495)
[6] Li X, Qi W, Zheng K, et al. Enhanced strength and ductility of Mg-Gd-Y-Zr alloys by secondary extrusion [J]. J. Magn. Alloy, 2013, 1: 54
[7] Muhammad R, Pan F S, Tang A T, et al. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium [J]. J. Alloys Compd., 2014, 603: 111
[8] Guo X L, Guo Q, Nie J H, et al. Particle size effect on the interfacial properties of SiC particle-reinforced AlCu-Mg composites [J]. Mater. Sci Eng., 2018, A711: 643
[9] Zhu Y P, Jin P P, Fei W D, et al. Effects of Mg2B2O5 whiskers on microstructure and mechanical properties of AZ31B magnesium matrix composites [J]. Mater. Sci. Eng., 2017, A684: 205
[10] Li X Q, Ma G J, Jin P P, et al. Microstructure and mechanical properties of the ultra-fine grained ZK60 reinforced with low content of nano-diamond by powder metallurgy [J]. J. Alloys Compd., 2019, 778: 309
[11] Cao G, Choi H, Oportus J, et al. Study on tensile properties and microstructure of cast AZ91D/AlN nanocomposites [J]. Mater. Sci. Eng., 2008, A494: 127
[12] Xiao P, Gao Y M, Yang C C, et al. Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles [J]. Mater. Sci. Eng., 2018, A710: 251
[13] Rezayat M, Parsa M H, Mirzadeh H, et al. Dynamic deformation response of Al-Mg and Al-Mg/B4C composite at elevated temperatures [J]. Mater. Sci. Eng., 2018, A712: 645
[14] Yuan Q H, Zeng X S, Liu Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO [J]. Carbon, 2016, 96: 843
[15] Sahoo B N, Panigrahi S K. Deformation behavior and processing map development of AZ91 Mg alloy with and without addition of hybrid in-situ TiC+TiB2 reinforcement [J]. J. Alloys Compd., 2019, 776: 865
[16] Popov V N. Carbon nanotubes: Properties and application [J]. Mater. Sci. Eng., 2004, R43: 61
[17] De Volder M F L, Tawfick S H, Baughman R H, et al. Carbon Nanotubes: Present and future commercial applications [J]. Science, 2013, 339(6119): 535
[18] Liang J H, Li H J, Qi L H, et al. Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion [J]. J. Alloys Compd., 2017, 728: 282
[19] Zhao F Z, Feng X H, Yang Y S. Microstructure and mechanical properties of CNT-reinforced AZ91D composites fabricated by ultrasonic processing [J]. Acta Metall. Sin., 2016, 29: 652
[20] Han G Q, Wang Z H, Liu K, et al. Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs [J]. Mater. Sci. Eng., 2015, A628: 350
[21] Shi H L, Wang X J, Li C D, et al. A novel method to fabricate CNT/Mg-6Zn composites with high strengthening efficiency [J]. Acta Metall. Sin. (Eng. Lett.), 2014, 27: 909
[22] Sun K, Shi Q Y, Sun Y J, et al. Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing [J]. Mater. Sci. Eng., 2012, A547: 32
[23] Wang M, Zhao Y, Wang L D, et al. Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process [J]. Carbon, 2018, 139: 954
[24] Wang X J, Xiang Y Y, Hu X S, et al. Recent progress on magnesium matrix composites reinforced by carbonaceous nanomaterials [J]. Acta Metall. Sin., 2019, 55: 73
[24] (王晓军, 向烨阳, 胡小石等. 碳纳米材料增强镁基复合材料研究进展 [J]. 金属学报, 2019, 55: 73)
[25] Rashad M, Pan F S, Hu H H, et al. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets [J]. Mater. Sci. Eng., 2015, A630: 36
[26] Zeng X S, Zhou G H, Xu Q, et al. A new technique for dispersion of carbon nanotube in a metal melt [J]. Mater. Sci. Eng., 2010, A527: 5335
[27] Fan G L, Jiang Y, Tan Z Q, et al. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy [J]. Carbon, 2018, 130: 333
[28] Garcés G, Rodríguez M, Pérez P, et al. High temperature mechanical properties of Mg-Y2O3 composite: Competition between texture and reinforcement contributions [J]. Compos. Sci. Technol., 2007, 67: 632
[29] Chao H Y, Yang Y, Wang X, et al. Effect of grain size distribution and texture on the cold extrusion behavior and mechanical properties of AZ31 Mg alloy [J]. Mater. Sci. Eng., 2011, A528: 3428
[30] Ding H L, Liu L F, Kamado S, et al. Study of the microstructure, texture and tensile properties of as-extruded AZ91 magnesium alloy [J]. J. Alloys Compd., 2008, 456: 400
[31] Garcés G, Pérez P, Adeva P. Effect of the extrusion texture on the mechanical behaviour of Mg-SiCp composites [J]. Scr. Mater., 2005, 52: 615
[32] Li X, Jiao F, Al-Samman T, et al. Influence of second-phase precipitates on the texture evolution of Mg-Al-Zn alloys during hot deformation [J]. Scr. Mater., 2012, 66: 159
[33] Li C D, Wang X J, Liu W Q, et al. Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite [J]. Mater. Sci. Eng., 2014, A597: 264
[34] Zhao Z D, Chen Q, Wang Y B, et al. Microstructures and mechanical properties of AZ91D alloys with Y addition [J]. Mater. Sci. Eng., 2009, A515: 152
[35] Meng L L, Wang X J, Ning J L, et al. Beyond the dimensional limitation in bio-inspired composite: Insertion of carbon nanotubes induced laminated Cu composite and the simultaneously enhanced strength and toughness [J]. Carbon, 2018, 130: 222
[36] Jiang L, Li Z Q, Fan G L, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution [J]. Carbon, 2012, 50: 1993
[37] Yuan Q H, Zeng X S, Liu Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO [J]. Carbon, 2016, 96: 843
[38] Zhang Z, Chen D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength [J]. Scr. Mater., 2006, 54: 1321
[39] Sanaty-Zadeh A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect [J]. Mater. Sci. Eng., 2012, A531: 112
[40] Shin S E, Choi H J, Shin J H, et al. Strengthening behavior of few-layered graphene/aluminum composites [J]. Carbon, 2015, 82: 143
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[10] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[11] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[12] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[15] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.