Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1537-1543    DOI: 10.11900/0412.1961.2019.00173
  研究论文 本期目录 | 过刊浏览 |
碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究
覃嘉宇1,2,李小强1,2,金培鹏1,2,王金辉1,2,朱云鹏1,2,3()
1. 青海大学新型轻合金省重点实验室 西宁 810016
2. 青海大学青海省轻金属合金及深加工工程技术研究中心 西宁 810016
3. 清华大学机械工程学院 北京 100084
Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite
QIN Jiayu1,2,LI Xiaoqiang1,2,JIN Peipeng1,2,WANG Jinhui1,2,ZHU Yunpeng1,2,3()
1. Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai University, Xining 810016, China
2. Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming, Qinghai University, Xining 810016, China
3. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
引用本文:

覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
QIN Jiayu, LI Xiaoqiang, JIN Peipeng, WANG Jinhui, ZHU Yunpeng. Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite[J]. Acta Metall Sin, 2019, 55(12): 1537-1543.

全文: PDF(8520 KB)   HTML
摘要: 

采用低温粉末冶金及热挤压工艺制备了具有超细晶组织的0.1%CNTs/AZ91 (质量分数)镁基复合材料。通过SEM、XRD、TEM对镁基复合材料的微观组织进行了表征,并对其室温力学性能进行测试。结果表明:CNTs在复合材料中分布均匀,CNTs的加入使得复合材料的晶粒尺寸从0.552 μm细化到0.346 μm,并促进了β相的析出,同时弱化了基面织构。复合材料的抗压强度和屈服强度分别达到了617和445 MPa,较基体提高了8.8%和7.2%;其抗拉强度和屈服强度分别达到了393和352 MPa,与基体相比分别提高了4.5%和6.0%。对强化机制进行分析,发现细晶强化和载荷传递是0.1%CNTs/AZ91复合材料的主要强化机制。

关键词 镁基复合材料低温粉末冶金显微组织力学性能强化机制    
Abstract

Magnesium alloys are well known for their low density, high specific strength. However, they are often limited by unsatisfactory mechanical properties. To meet the challenge of growing demand for light structural applications, metal matrix composites (MMCs) have attracted more attention. Carbon nanotubes (CNTs) have attracted much attention as the ideal reinforcements for MMCs due to their excellent mechanical strength and Young's modulus. In this work, 0.1%CNTs/AZ91 (mass fraction) magnesium matrix composites were prepared by low temperature powder metallurgy and hot extrusion. The magnesium alloy and composites were observed and analyzed by SEM, XRD and TEM. The room temperature mechanical properties of the composites were tested by Instron 5982 machine. The results showed that the CNTs distributed uniformly in the composites. The CNTs have an effect on reducing grain size, promoting precipitation of β-Mg17Al12 and weakening basal texture. The compressive strength and yield strength of the composites reached 617 and 445 MPa, which increased by 8.8% and 7.2%, respectively. The tensile strength and yield strength were 393 and 352 MPa, which 4.5% and 6.0% MPa higher than the matrix, respectively. It can be found that fine grain strengthening and load transfer play a leading role in improving the strength in the 0.1%CNTs/AZ91 magnesium matrix composites.

Key wordsmagnesium matrix composite    low temperature powder metallurgy    microstructure    mechanical property    strengthening mechanism
收稿日期: 2019-05-31     
ZTFLH:  TB333  
基金资助:国家自然科学基金项目(No.51661028);青海省重大科技专项项目(No.2018-GX-A1)
作者简介: 覃嘉宇,男,1995年生,硕士生
图1  AZ91镁合金粉末和CNTs微观组织
图2  CNTs、AZ91及0.1%CNTs/AZ91复合材料的XRD谱
图3  挤压态AZ91基体合金和0.1%CNTs/AZ91复合材料的TEM像及晶粒尺寸分布
图4  CNTs及Mg17Al12在0.1%CNTs/AZ91复合材料中的分布及界面微观组织
图5  挤压态AZ91基体合金和0.1%CNTs/AZ91复合材料的{0001}面和{101ˉ0}面宏观织构
图6  挤压态AZ91合金及0.1%CNTs/AZ91复合材料的室温压缩性能和室温拉伸性能

Material

Tensile

R

CompressiveRef.
σb / MPaσ0.2 / MPaδ / %σbc / MPaσ0.2 / MPaδ / %

0.6%(CNTs+GNPs)/

Mg-1Al

234

185

16.4

26.4

-

-

-

[7]

1%AlN/AZ911681447.632.4---[11]
1%CNTs/AZ9138927812.830.3---[18]
0.5%CNTs/AZ91230129813.9---[19]
1%CNTs/Mg-6Zn3212091725.5---[33]
2Y/AZ91323.1216.914.35.1---[34]
AZ9137633210.3-56741514.2This work
0.1%CNTs/AZ913933529.344.6861744515.5This work
表1  相关镁基复合材料室温力学性能[7,11,18,19,33,34]
[1] Mordike B L, Ebert T. Magnesium: Properties-applications-potential [J]. Mater. Sci. Eng., 2001, A302: 37
[2] Froes F H, Eliezer D, Aghion E. The science, technology, and applications of magnesium [J]. JOM, 1998, 50(9): 30
[3] Ishihara S, Nan Z Y, Goshima T. Effect of microstructure on fatigue behavior of AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2007, A468-470: 214
[4] Le Q C, Zhang Z Q, Shao Z W, et al. Microstructures and mechanical properties of Mg-2%Zn-0.4%RE alloys [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: s352
[5] Gao S Y, Le Q C, Zhang Z Q, et al. Effects of Al-Al4C3 refiner and ultrasonic field on microstructures of pure Mg [J]. Acta Metall. Sin., 2010, 46: 1495
[5] (高声远, 乐启炽, 张志强等. Al-Al4C3细化剂和超声场对纯Mg组织的影响 [J]. 金属学报, 2010, 46: 1495)
[6] Li X, Qi W, Zheng K, et al. Enhanced strength and ductility of Mg-Gd-Y-Zr alloys by secondary extrusion [J]. J. Magn. Alloy, 2013, 1: 54
[7] Muhammad R, Pan F S, Tang A T, et al. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium [J]. J. Alloys Compd., 2014, 603: 111
[8] Guo X L, Guo Q, Nie J H, et al. Particle size effect on the interfacial properties of SiC particle-reinforced AlCu-Mg composites [J]. Mater. Sci Eng., 2018, A711: 643
[9] Zhu Y P, Jin P P, Fei W D, et al. Effects of Mg2B2O5 whiskers on microstructure and mechanical properties of AZ31B magnesium matrix composites [J]. Mater. Sci. Eng., 2017, A684: 205
[10] Li X Q, Ma G J, Jin P P, et al. Microstructure and mechanical properties of the ultra-fine grained ZK60 reinforced with low content of nano-diamond by powder metallurgy [J]. J. Alloys Compd., 2019, 778: 309
[11] Cao G, Choi H, Oportus J, et al. Study on tensile properties and microstructure of cast AZ91D/AlN nanocomposites [J]. Mater. Sci. Eng., 2008, A494: 127
[12] Xiao P, Gao Y M, Yang C C, et al. Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles [J]. Mater. Sci. Eng., 2018, A710: 251
[13] Rezayat M, Parsa M H, Mirzadeh H, et al. Dynamic deformation response of Al-Mg and Al-Mg/B4C composite at elevated temperatures [J]. Mater. Sci. Eng., 2018, A712: 645
[14] Yuan Q H, Zeng X S, Liu Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO [J]. Carbon, 2016, 96: 843
[15] Sahoo B N, Panigrahi S K. Deformation behavior and processing map development of AZ91 Mg alloy with and without addition of hybrid in-situ TiC+TiB2 reinforcement [J]. J. Alloys Compd., 2019, 776: 865
[16] Popov V N. Carbon nanotubes: Properties and application [J]. Mater. Sci. Eng., 2004, R43: 61
[17] De Volder M F L, Tawfick S H, Baughman R H, et al. Carbon Nanotubes: Present and future commercial applications [J]. Science, 2013, 339(6119): 535
[18] Liang J H, Li H J, Qi L H, et al. Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion [J]. J. Alloys Compd., 2017, 728: 282
[19] Zhao F Z, Feng X H, Yang Y S. Microstructure and mechanical properties of CNT-reinforced AZ91D composites fabricated by ultrasonic processing [J]. Acta Metall. Sin., 2016, 29: 652
[20] Han G Q, Wang Z H, Liu K, et al. Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs [J]. Mater. Sci. Eng., 2015, A628: 350
[21] Shi H L, Wang X J, Li C D, et al. A novel method to fabricate CNT/Mg-6Zn composites with high strengthening efficiency [J]. Acta Metall. Sin. (Eng. Lett.), 2014, 27: 909
[22] Sun K, Shi Q Y, Sun Y J, et al. Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing [J]. Mater. Sci. Eng., 2012, A547: 32
[23] Wang M, Zhao Y, Wang L D, et al. Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process [J]. Carbon, 2018, 139: 954
[24] Wang X J, Xiang Y Y, Hu X S, et al. Recent progress on magnesium matrix composites reinforced by carbonaceous nanomaterials [J]. Acta Metall. Sin., 2019, 55: 73
[24] (王晓军, 向烨阳, 胡小石等. 碳纳米材料增强镁基复合材料研究进展 [J]. 金属学报, 2019, 55: 73)
[25] Rashad M, Pan F S, Hu H H, et al. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets [J]. Mater. Sci. Eng., 2015, A630: 36
[26] Zeng X S, Zhou G H, Xu Q, et al. A new technique for dispersion of carbon nanotube in a metal melt [J]. Mater. Sci. Eng., 2010, A527: 5335
[27] Fan G L, Jiang Y, Tan Z Q, et al. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy [J]. Carbon, 2018, 130: 333
[28] Garcés G, Rodríguez M, Pérez P, et al. High temperature mechanical properties of Mg-Y2O3 composite: Competition between texture and reinforcement contributions [J]. Compos. Sci. Technol., 2007, 67: 632
[29] Chao H Y, Yang Y, Wang X, et al. Effect of grain size distribution and texture on the cold extrusion behavior and mechanical properties of AZ31 Mg alloy [J]. Mater. Sci. Eng., 2011, A528: 3428
[30] Ding H L, Liu L F, Kamado S, et al. Study of the microstructure, texture and tensile properties of as-extruded AZ91 magnesium alloy [J]. J. Alloys Compd., 2008, 456: 400
[31] Garcés G, Pérez P, Adeva P. Effect of the extrusion texture on the mechanical behaviour of Mg-SiCp composites [J]. Scr. Mater., 2005, 52: 615
[32] Li X, Jiao F, Al-Samman T, et al. Influence of second-phase precipitates on the texture evolution of Mg-Al-Zn alloys during hot deformation [J]. Scr. Mater., 2012, 66: 159
[33] Li C D, Wang X J, Liu W Q, et al. Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite [J]. Mater. Sci. Eng., 2014, A597: 264
[34] Zhao Z D, Chen Q, Wang Y B, et al. Microstructures and mechanical properties of AZ91D alloys with Y addition [J]. Mater. Sci. Eng., 2009, A515: 152
[35] Meng L L, Wang X J, Ning J L, et al. Beyond the dimensional limitation in bio-inspired composite: Insertion of carbon nanotubes induced laminated Cu composite and the simultaneously enhanced strength and toughness [J]. Carbon, 2018, 130: 222
[36] Jiang L, Li Z Q, Fan G L, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution [J]. Carbon, 2012, 50: 1993
[37] Yuan Q H, Zeng X S, Liu Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO [J]. Carbon, 2016, 96: 843
[38] Zhang Z, Chen D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength [J]. Scr. Mater., 2006, 54: 1321
[39] Sanaty-Zadeh A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect [J]. Mater. Sci. Eng., 2012, A531: 112
[40] Shin S E, Choi H J, Shin J H, et al. Strengthening behavior of few-layered graphene/aluminum composites [J]. Carbon, 2015, 82: 143
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.