Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1527-1536    DOI: 10.11900/0412.1961.2019.00090
  研究论文 本期目录 | 过刊浏览 |
大尺寸单晶叶片中小角度晶界的形成与演化
谢光(),张少华,郑伟,张功,申健,卢玉章,郝红全,王莉,楼琅洪,张健
中国科学院金属研究所 沈阳 110016
Formation and Evolution of Low Angle Grain Boundary in Large-Scale Single Crystal Superalloy Blade
XIE Guang(),ZHANG Shaohua,ZHENG Wei,ZHANG Gong,SHEN Jian,LU Yuzhang,HAO Hongquan,WANG Li,LOU Langhong,ZHANG Jian
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

谢光, 张少华, 郑伟, 张功, 申健, 卢玉章, 郝红全, 王莉, 楼琅洪, 张健. 大尺寸单晶叶片中小角度晶界的形成与演化[J]. 金属学报, 2019, 55(12): 1527-1536.
XIE Guang, ZHANG Shaohua, ZHENG Wei, ZHANG Gong, SHEN Jian, LU Yuzhang, HAO Hongquan, WANG Li, LOU Langhong, ZHANG Jian. Formation and Evolution of Low Angle Grain Boundary in Large-Scale Single Crystal Superalloy Blade[J]. Acta Metall Sin, 2019, 55(12): 1527-1536.

全文: PDF(22848 KB)   HTML
摘要: 

通过EBSD和XCT等方法研究了大尺寸单晶叶片制备过程中小角度晶界的形成与演化过程。结果表明,在大尺寸单晶叶片生长过程中,沿单晶叶片生长方向,随叶片高度的增加,其横截面枝晶排列的规则程度越来越恶化;叶片出现小角度晶界,其取向差与产生频率随距离初始位置高度的增加而显著增加;晶体取向测试表明,扩展区枝晶取向分布较为集中,而叶身枝晶取向分散度增大,但仍分布在扩展区取向附近。小角度晶界产生的原因可能与模壳阻碍熔体收缩产生应力,进而导致二次枝晶转动有关。表面较大尺寸的孔洞有利于小角晶界的产生。此外,还发现取向相近、且靠近[001]取向的枝晶淘汰它们之间的杂晶后相撞而形成小角度晶界。

关键词 大尺寸单晶叶片小角度晶界枝晶取向X射线层析扫描    
Abstract

Ni-based single crystal (SX) superalloys are widely used for production of blades in gas turbines and aircraft engines for their superior mechanical performance at high temperatures. In this work, the formation and evolution of low angle grain boundary (LAGB) of a SX blade during directionally solified (DS) process were investigated by EBSD and XCT. It indicated that the alignment of dendrites was deteriorated with the increasing of the height along the growth direction during the DS process of SX blade. LAGBs were found in the SX blade. The misorientation angle and the frequency of LAGB were obviously enhanced with the increasing of the distance away from the initiated location of LAGB. Crystal orientation measurements showed that the orientation distribution of dendrites in the extended zone was concentrated, while the dispersion of dendrite orientation in the blade body increased, but it was still around that of the extended zone. The reason for the formation of LAGB may be related to the shell hindering the melt shrinkage which resulted in the production of the force and then led to the rotation of secondary dendrites. Larger size voids on the surface would be beneficial to the formation of LAGB. In addition, it was found that dendrites with the orientation approching [001] eliminated the stray grains between them and impinged to form LAGB.

Key wordslarge-scale single crystal superalloy blade    low angle grain boundary    dendrite    orientation    XCT
收稿日期: 2019-04-01     
ZTFLH:  TG156.1  
基金资助:国家自然科学基金项目(Nos.51771204);国家自然科学基金项目(U1732131);国家自然科学基金项目(51911530154);国家自然科学基金项目(51671196);国家自然科学基金项目(91860201);国家自然科学基金项目(51631008);国家科技重大专项项目(No.2017-VII-0008-0101)
作者简介: 谢 光,男,1981年生,副研究员,博士
图1  大尺寸单晶叶片取样位置示意图
图2  单晶叶片起始扩展区显微组织
图3  单晶叶片榫头显微组织
图4  单晶叶片叶身显微组织
图5  扩展区和叶身取向分布(黑色数据点为扩展区取向,灰色数据点为叶身取向)
图6  单晶叶片扩展区中间部位和靠近模壳位置小角度晶界沿叶片宽度分布
图7  叶身小角度晶界沿叶片宽度分布
图8  扩展区和叶身小角度晶界角度分布频率
图9  样品孔洞分布和纵截面枝晶形貌
图10  样品不同横截面枝晶形貌
图11  从小角晶界起始位置沿生长方向往上约5 mm位置处的取向分布
图12  起晶段晶粒生长形貌及晶粒(晶界)标记
图13  图12中晶粒取向分布(I、II、III分别代表图12中的晶粒I、晶粒II和杂晶III)
[1] Sims C T, Stoloff N S, Hagel W C. Superalloys II—High Temperature Materials for Aerospace and Industrial Power [M]. New York: John Wiley, 1987: 615
[2] Gell M, Duhl D N, Giamei A F. The development of single crystal superalloy turbine blades [A]. Superalloys 1980 [C]. Warrendale, PA: TMS, 1980: 205
[3] Zhang J, Huang T W, Liu L, et al. Advances in solidification characteristics and typical casting defects in nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2015, 51: 1163
[3] (张 军, 黄太文, 刘 林等. 单晶高温合金凝固特性与典型凝固缺陷研究 [J]. 金属学报, 2015, 51: 1163)
[4] Chen R Z. Development status of single crystal superalloys [J]. J. Mater. Eng., 1995, (8): 3
[4] (陈荣章. 单晶高温合金发展现状 [J]. 材料工程, 1995, (8): 3)
[5] Zhao J Q, Li J R, Liu S Z, et al. Effects of low angle grain boundaries on tensile properties of single crystal superalloy DD6 [J]. J. Mater. Eng., 2008, (8): 73
[5] (赵金乾, 李嘉荣, 刘世忠等. 小角度晶界对单晶高温合金DD6拉伸性能的影响 [J]. 材料工程, 2008, (8): 73)
[6] Li J R, Zhao J Q, Liu S Z, et al. Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6 [A]. Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 443
[7] Ross E W, O'Hara K S. Rene N4: First generation single crystal turbine airfoil alloy with improved oxidation resistance, low angle boundary strength and superior time rupture life [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 19
[8] Shi Z X, Li J R, Liu S Z, et al. Effect of LAB on the stress rupture properties and fracture characteristic of DD6 single crystal superalloy [J]. Rare Met. Mater. Eng., 2012, 41: 962
[9] Shi Z X, Li J R, Liu S Z, et al. Transverse stress rupture properties of DD6 single crystal superalloy with twist low angle boundaries [J]. J. Mater. Eng., 2009, (suppl.1: 80
[9] (史振学, 李嘉荣, 刘世忠等. 带有扭转小角度晶界DD6单晶高温合金的横向持久性能 [J] 材料工程, 2009, (增刊): 80)
[10] Zhao J Q, Li J R, Liu S Z, et al. Effects of low angle grain boundaries on stress rupture properties of single crystal superalloy DD6 [J]. J. Aeron. Mater., 2007, 27(6): 6
[10] (赵金乾, 李嘉荣, 刘世忠等. 小角度晶界对单晶高温合金DD6持久性能的影响 [J]. 航空材料学报, 2007, 27(6): 6)
[11] Wang Y, Wang D, Zhang G, et al. Characterization of tilt and twist low angle grain boundaries and their effects on intermediate-temperature creep deformation behavior [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 757
[12] Napolitano R E, Schaefer R J. The convergence-fault mechanism for low-angle boundary formation in single-crystal castings [J]. J. Mater. Sci., 2000, 35: 1641
[13] Wang W, Kermanpur A, Lee P D, et al. Simulation of dendritic growth in the platform region of single crystal superalloy turbine blades [J]. J. Mater. Sci., 2003, 38: 4385
[14] D'Souza N, Newell M, Devendra K, et al. Formation of low angle boundaries in Ni-based superalloys [J]. Mater. Sci. Eng., 2005, A413-414: 567
[15] Newell M, Devendra K, Jennings P A, et al. Role of dendrite branching and growth kinetics in the formation of low angle boundaries in Ni-base superalloys [J]. Mater. Sci. Eng., 2005, A412: 307
[16] Stanford N, Djakovic A, Shollock B A, et al. Seeding of single crystal superalloys—Role of seed melt-back on casting defects [J]. Scr. Mater., 2004, 50: 159
[17] Siredey N, Boufoussi M, Denis S, et al. Dendritic growth and crystalline quality of nickel-base single grain [J]. J. Cryst. Growth, 1993, 30: 132
[18] Newell M, D'Souza N, Green N R. Formation of low angle boundaries in Ni-based superalloys [J]. Int. J. Cast Met. Res., 2009, 22: 66
[19] Bogdanowicz W, Albrecht R, Sieniawski J, et al. The subgrain structure in turbine blade roots of CMSX-4 superalloy [J]. J. Cryst. Growth, 2014, 401: 418
[20] Dragnevski K, Mullis A M, Walker D J, et al. Mechanical deformation of dendrites by fluid flow during the solidification of undercooled melts [J]. Acta Mater., 2002, 50: 3743
[21] Madison J, Spowart J E, Rowenhowst D J, et al. Fluid flow and defect formation in the three-dimensional dendritic structure of nickel-based single crystals [J]. Metall. Mater. Trans., 2012, 43A: 369
[22] Huo M, Liu L, Huang T W, et al. Formation mechanism, influencing factors and control measures of low angle boundaries in Ni-based single crystal superalloys [J]. Mater. Rev., 2018, 32: 3394
[22] (霍 苗, 刘 林, 黄太文等. 镍基单晶高温合金小角度晶界的形成机制、影响因素与控制措施 [J]. 材料导报, 2018, 32: 3394)
[23] Seth B B. Superalloys: The utility gas turbine perspective [A]. Superalloy 2000 [C]. Warrendale, PA: TMS, 2000, 3
[24] Bussac A D, Gandin C A. Prediction of a process window for the investment casting of dendritic single crystals [J]. Mater. Sci. Eng., 1997, A237: 35
[25] Brundidge C L, Miller J D, Pollock T M. Development of dendritic structure in the liquid-metal-cooled, directional-solidification process [J]. Metall. Mater. Trans., 2011, 42A: 2723
[26] He G, Li J G, Mao X M, et al. Solid-liquid interface shape and morphological defects of single crystal superalloy [J]. J. Aeron. Mater., 1995, 15(1): 9
[26] (何 国, 李建国, 毛协民等. 单晶高温合金固液界面形状及对凝固组织的影响 [J]. 航空材料学报, 1995, 15(1): 9)
[1] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[2] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[3] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[4] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[5] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[6] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[7] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[8] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[9] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[10] 孙衡,林小娉,周兵,赵圣诗,唐琴,董允. 定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为[J]. 金属学报, 2020, 56(3): 340-350.
[11] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[12] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[13] 朱健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制[J]. 金属学报, 2020, 56(12): 1592-1604.
[14] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[15] 孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.