|
|
新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究 |
赵明雨1,甄会娟2,3( ),董志宏2,杨秀英1( ),彭晓4 |
1. 沈阳工学院 抚顺 113122 2. 中国科学院金属研究所 沈阳 110016 3. 中国科学技术大学材料科学与工程学院 沈阳 110016 4. 南昌航空大学材料科学与工程学院 南昌 330063 |
|
Preparation and Performance of a Novel Wear-Resistant and High Temperature Oxidation-Resistant NiCrAlSiC Composite Coating |
Mingyu ZHAO1,Huijuan ZHEN2,3( ),Zhihong DONG2,Xiuying YANG1( ),Xiao PENG4 |
1. Shenyang Institute of Technology, Fushun 113122, China 2. Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 4. School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China |
引用本文:
赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
Mingyu ZHAO,
Huijuan ZHEN,
Zhihong DONG,
Xiuying YANG,
Xiao PENG.
Preparation and Performance of a Novel Wear-Resistant and High Temperature Oxidation-Resistant NiCrAlSiC Composite Coating[J]. Acta Metall Sin, 2019, 55(7): 902-910.
[1] | Brandl W, Grabke H J, Toma D, et al. The oxidation behaviour of sprayed MCrAlY coatings [J]. Surf. Coat. Technol., 1996, 86-87: 41 | [2] | Wang H Y, Zuo D W, Chen G, et al. Hot corrosion behaviour of low Al NiCoCrAlY cladded coatings reinforced by nano-particles on a Ni-base super alloy [J]. Corros. Sci., 2010, 52: 3561 | [3] | Feng M, Chen M H, Yu Z D, et al. Comparative study of thermal shock behavior of the arc ion plating NiCrAlY and the enamel based composite coatings [J]. Acta Metall. Sin., 2017, 53: 1636 | [3] | (丰 敏, 陈明辉, 余中狄等. 多弧离子镀NiCrAlY涂层与搪瓷基复合涂层的抗热震行为对比研究 [J]. 金属学报, 2017, 53: 1636) | [4] | Peng X, Jiang S M, Sun X D, et al. Cyclic oxidation and hot corrosion behaviors of a gradient NiCoCrAlYSi coating [J]. Acta Metall. Sin., 2016, 52: 625 | [4] | (彭 新, 姜肃猛, 孙旭东等. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为 [J]. 金属学报, 2016, 52: 625) | [5] | Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating [J]. Adv. Eng. Mater., 2004, 6: 74 | [6] | Hou G L, An Y L, Zhao X Q, et al. Effect of alumina dispersion on oxidation behavior as well as friction and wear behavior of HVOF-sprayed CoCrAlYTaCSi coating at elevated temperature up to 1000 ℃ [J]. Acta Mater., 2015, 95: 164 | [7] | Zhao L D, Parco M, Lugscheider E. Wear behaviour of Al2O3 dispersion strengthened MCrAlY coating [J]. Surf. Coat. Technol., 2004, 184: 298 | [8] | Bobzin K, Schl?fer T, Richardt K, et al. Development of oxide dispersion strengthened MCrAlY coatings [J]. J. Therm. Spray Technol., 2008, 17: 853 | [9] | Xie Y J, Yang Y H, Wang M S, et al. MCrAlY/TaC metal matrix composite coatings produced by electrospark deposition [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 173 | [10] | Bolelli G, Candeli A, Lusvarghi L, et al. Tribology of NiCrAlY+Al2O3 composite coatings by plasma spraying with hybrid feeding of dry powder+suspension [J]. Wear, 2015, 344-345: 69 | [11] | Bolelli G, Candeli A, Lusvarghi L, et al. "Hybrid" plasma spraying of NiCrAlY+Al2O3+h-BN composite coatings for sliding wear applications [J]. Wear, 2017, 378-379: 68 | [12] | Wang D S, Tian Z J, Wang S L, et al. Microstructure and wear resistance of laser cladding nano-Al2O3/MCrAlY composite graded coating on TiAl alloy [J]. Appl. Mech. Mater., 2012, 217-219: 1350 | [13] | Wang H Y, Zuo D W, Li X F, et al. Effects of nano-Al2O3p on high temperature frictional wear behaviors of NiCoCrAIY cladded coatings [J]. Adv. Mater. Res., 2012, 426: 40 | [14] | Richer P, Yandouzi M, Beauvais L, et al. Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying [J]. Surf. Coat. Technol., 2010, 204: 3962 | [15] | Di Ferdinando M, Fossati A, Lavacchi A, et al. Isothermal oxidation resistance comparison between air plasma sprayed, vacuum plasma sprayed and high velocity oxygen fuel sprayed CoNiCrAlY bond coats [J]. Surf. Coat. Technol., 2010, 204: 2499 | [16] | Wang D S, Tian Z J, Shen L D, et al. Research status of MCrAlY coatings prepared by laser cladding [J]. Mater. Mech. Eng., 2013, 37(12): 1 | [16] | (王东生, 田宗军, 沈理达等. 激光熔覆MCrAlY涂层的研究现状 [J]. 机械工程材料, 2013, 37(12): 1) | [17] | Foster J, Cameron B P, Carew J A. The production of multi-component alloy coatings by particle codeposition [J]. Trans. IMF, 1985, 63: 115 | [18] | Honey F J, Kedward E C, Wride V. The development of electrodeposits for high-temperature oxidation/corrosion resistance [J]. J. Vac. Sci. Technol., 1986, 4A: 2593 | [19] | Yang X, Peng X, Xu C, et al. Electrochemical assembly of Ni-xCr-yAl nanocomposites with excellent high-temperature oxidation resistance [J]. J. Electrochem. Soc., 2009, 156: C167 | [20] | Lin Z P, Huang X M, Shu X, et al. Effect of surfactants on Ni-SiC composite plating [J]. Met. Funct. Mater., 2008, 15(5): 20 | [20] | (林志平, 黄新民, 舒 霞等. 表面活性剂对Ni-SiC复合电镀的影响 [J]. 金属功能材料, 2008, 15(5): 20) | [21] | Kim S K, Yoo H J. Formation of bilayer Ni-SiC composite coatings by electrodeposition [J]. Surf. Coat. Technol., 1998, 108-109: 564 | [22] | Li M L, Zhou R F, Ma C Y, et al. Effect of process parameters on SiC particle content in Ni-SiC nanocoatings [J]. J. Funct. Mater., 2017, 48: 189 | [22] | (李孟龙, 周瑞芬, 马春阳等. 工艺参数对Ni-SiC纳米镀层SiC粒子复合量的影响 [J]. 功能材料, 2017, 48: 189) | [23] | Yang X Y, Peng X, Wang F H. Preparation and characterization of novel electrodeposited Ni-Cr-Al composite coatings [J]. Mater. Rev., 2011, 25(suppl. 2): 177 | [23] | (杨秀英, 彭 晓, 王福会. Ni-Cr-Al纳米复合镀层的制备及结构表征 [J]. 材料导报, 2011, 25(增刊2): 177) | [24] | Zhen H J, Peng X. A new approach to manufacture oxidation-resistant Ni-Cr-Al overlay coatings by electrodeposition [J]. Corros. Sci., 2019, 150: 121 | [25] | Zhen H J, Tian L X, Dong Z H, et al. Electrodeposition of NiCrAl(Y) coatings with high contents of Cr and Al and their oxidation resistance [J]. J. Aeronaut. Mater., 2018, 38(2): 52 | [25] | (甄会娟, 田礼熙, 董志宏等. 高(Cr, Al)含量NiCrAl(Y)涂层电沉积制备及抗高温氧化性能 [J]. 航空材料学报, 2018, 38(2): 52) | [26] | Zhen H, Peng X. Oxidation-resistant CoCrAl coatings fabricated by electrodeposition in combination with electrophoretic deposition [J]. Surf. Coat. Technol., 2018, 352: 541 | [27] | Wagner C. Passivity and inhibition during the oxidation of metals at elevated temperatures [J]. Corros. Sci., 1965, 5: 751 | [28] | Li Q, Peng X, Zhang J Q, et al. Comparison of the oxidation of high-sulfur Ni-25Cr-5Al alloys in as-cast and as-sputtered states [J]. Corros. Sci., 2010, 52: 1213 | [29] | Peng X, Wang F H. High temperature of corrosion of nano-crystalline metallic materials [J]. Acta Metall. Sin., 2014, 50: 202 | [29] | (彭 晓, 王福会. 纳米晶金属材料的高温腐蚀行为 [J]. 金属学报, 2014, 50: 202) | [30] | Guo B H, Li H L. Effect of Ni-SiC nano-composite coating on the friction and wear behavior of TA15 alloy [J]. Nonferrous Met. Eng., 2016, 6(6): 29 | [30] | (郭宝会, 李海龙. 纳米Ni-SiC复合涂层对TA15合金磨擦磨损性能的影响 [J]. 有色金属工程, 2016, 6(6): 29) | [31] | Wu C F, Ma M X, Liu W J, et al. Study on wear resistance of laser caldding Fe-based composite coatings reinforced by in-situ multiple carbide particles [J]. Acta Metall. Sin., 2009, 45: 1013 | [31] | (吴朝锋, 马明星, 刘文今等. 激光原位制备复合碳化物颗粒增强铁基复合涂层及其耐磨性的研究 [J]. 金属学报, 2009, 45: 1013) | [32] | Zhou Y B, Ding Y Z. Oxidation resistance of co-deposited Ni-SiC nanocomposite coating [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 925 | [33] | Fang Y L, Wang H M. Room-temperature sliding wear properties of laser melt deposited Cr13Ni5Si2/γ ternary metal silicide alloy [J]. Acta Metall. Sin., 2006, 42: 181 | [33] | (方艳丽, 王华明. 激光熔化沉积Cr13Ni5Si2/γ-Ni基合金的耐磨性能 [J]. 金属学报, 2006, 42: 181) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|