Please wait a minute...
金属学报  2018, Vol. 54 Issue (6): 895-904    DOI: 10.11900/0412.1961.2017.00377
  本期目录 | 过刊浏览 |
预氧化处理对G115钢高温蒸气氧化行为的影响
白银1,2, 刘正东1(), 谢建新2, 包汉生1, 陈正宗1
1 钢铁研究总院 北京 1000812 北京科技大学材料科学与工程学院 北京 100083
Effect of Pre-Oxidation Treatment on the Behavior of High Temperature Oxidation in Steam of G115 Steel
Yin BAI1,2, Zhengdong LIU1(), Jianxin XIE2, Hansheng BAO1, Zhengzong CHEN1
1 Central Iron and Steel Research Institute, Beijing 100081, China
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

白银, 刘正东, 谢建新, 包汉生, 陈正宗. 预氧化处理对G115钢高温蒸气氧化行为的影响[J]. 金属学报, 2018, 54(6): 895-904.
Yin BAI, Zhengdong LIU, Jianxin XIE, Hansheng BAO, Zhengzong CHEN. Effect of Pre-Oxidation Treatment on the Behavior of High Temperature Oxidation in Steam of G115 Steel[J]. Acta Metall Sin, 2018, 54(6): 895-904.

全文: PDF(6974 KB)   HTML
摘要: 

以Ar气为保护环境,对G115马氏体耐热钢进行了预氧化处理。通过循环蒸气氧化实验,研究了未预氧化处理和预氧化处理2种试样在650 ℃水蒸气中的高温氧化行为。采用分析天平测量氧化增重,得到了氧化增重动力学曲线。通过SEM及附带的EDS分析了氧化皮的形貌和结构,采用XRD结合EDS对氧化产物进行了相鉴定。实验结果表明,预氧化处理明显降低G115钢1800 h以内的氧化增重。预氧化处理后,G115钢的蒸气氧化动力学由立方型转变为直线型,氧化皮结构由典型的双层结构转变为多层结构。预氧化处理试样的氧化皮最外层为由Fe向外扩散形成的富Fe层,中层为Cr含量达46% (质量分数)的富Cr层,最内层由金属基体转变而成。其中氧化皮中层由于Cr含量高而具有良好的保护性,是整体氧化过程的控制步骤。另外该层厚度接近常数,使得预氧化处理试样的氧化动力学呈直线型。以氧化皮结构和氧化过程机制为根据,对预氧化处理的长期效果进行了评估。

关键词 耐热钢高温氧化氧化动力学预氧化    
Abstract

In order to improve the steam oxidation resistance of G115 steel (9Cr3W3CoVNbCuBN) at 650 ℃, pre-oxidation treatment was carried out in argon environment with low oxygen partial pressure. The oxidation behaviors of the pre-oxidized and untreated samples were simultaneously investigated by a cyclic oxidation experiment. Weight gains of samples were measured by analytical balance, phases of oxide products were identified by XRD and EDS, morphology and structure of scales were characterized by SEM and EDS. The result showed that pre-oxidation treatment significantly decrease oxidation weight gains in 1800 h. After pre-oxidation treatment, the oxidation kinetics transformed from cubic into linear form, and the scale structures transformed from duplex layers into triple layers. In the scale of pre-oxidized samples, the outermost layer was enriched in Fe, the middle layer was enriched in Cr, and the innermost layer was transformed from the matrix metal. The middle layer had chromium content as high as 46% (mass fraction) and was considered to be conformed of chromite (FeCr2O4). This layer was the most protective layer due to its highest Cr content, and the diffusion of O and Fe though it was the main controlling process of the whole oxidation. It suggested that the stable structure of the middle layer improved the oxidation resistance of pre-oxidation samples. The thickness of the middle layer nearly kept constant during the whole oxidation process, which was the main reason why the pre-oxidized sample had linear oxidation kinetics. The long term effect of the pre-oxidation treatment was evaluated based on the scale structure and oxidation mechanism.

Key wordsheat-resistant steel    high temperature oxidation    oxidation kinetics    pre-oxidation
收稿日期: 2017-09-08     
ZTFLH:  TG172.5  
基金资助:国家重点研发计划项目No.2017YFB0305200
作者简介:

作者简介 白 银,男,1987年生,博士生

图1  高温蒸气氧化实验平台示意图
图2  未预氧化处理和预氧化处理的G115试样650 ℃蒸气氧化后增重与时间的关系
图3  未预氧化处理试样在650 ℃蒸气氧化100和800 h后表层氧化物形貌的SEM像
图4  未预氧化试样在蒸气中氧化200 h后表层氧化物的XRD谱
图5  预氧化后试样的表层氧化物形貌的SEM像、XRD谱和EDS分析
图6  预氧化处理试样在650 ℃水蒸气中氧化不同时间后表层形貌的SEM像
图7  图6a中底层氧化物和晶须顶端组织及图6b中晶须处的EDS分析结果
图8  未预氧化试样蒸气氧化400 h后截面形貌的SEM像
图9  经Ar气预氧化的G115钢试样在650 ℃水蒸气中氧化后氧化层截面形貌的SEM像
图10  预氧化处理试样氧化400 h后氧化皮内元素分布图
图11  预氧化试样氧化皮中层厚度与氧化时间的关系
[1] Blum R, Vanstone R W.Materials development for boilers and steam turbines operating at 700 ℃ [A]. Proceedings of the 6th International Charles Parsons Materials Conference[C]. Dublin, Ireland: Trinity College Dublin, 2003: 498
[2] Tschaffon H.The European way to 700 ℃ coal fired power plant [A]. Proceedings of the 8th Liege Conference on Materials for Advanced Power Engineering 2006[C]. Liege, Belgium: Energy Technology Forschungszentrum Julich, 2006: 61
[3] Metzger H K, Maile K, Klenk A, et al.Investigations on nickel based alloys and welds for A-USC applications [A]. Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants[C]. Waikoloa, Hawaii, USA: ASM International, 2013: 6
[4] Di Gianfrancesco A, Tizzanini A, Jedamzik M, et al.ENCIO project: An European approach to 700 ℃ power plant [A]. Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants[C]. Waikoloa, Hawaii, USA: ASM International, 2013: 19
[5] Viswanathan R, Henry J F, Tanzosh J, et al.U.S. program on materials technology for USC power plants [A]. Proceeding of the 4th International Conference on Advances in Materials Technology for Fossil Power Plants[C]. Hilton Head Island, South Carolina, USA: ASM International, 2005: 3
[6] Shingledecker J, Purgert R, Rawls P.Current status of the U.S. DOE/OCDO A-USC materials technology research and development program [A]. Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants[C]. Waikoloa, Hawaii, USA: ASM International, 2013: 41
[7] Fukuda M, Saito E, Semba H, et al.Advanced USC technology development in Japan [A]. Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants[C]. Waikoloa, Hawaii, USA: ASM International, 2013: 24
[8] Sun R, Cui Z Z, Tao Y.Progress of China 700 ℃ USC development program [A]. Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants[C]. Waikoloa, Hawaii, USA: ASM International, 2013: 1
[9] Mathur A, Bhutani O P, Jayakumar T, et al.India's national A-USC mission-plan and progress [A]. Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants[C]. Waikoloa, Hawaii, USA: ASM International, 2013: 53
[10] Yan P, Liu Z D, Bao H S, et al.Effect of tempering temperature on the toughness of 9Cr-3W-3Co martensitic heat resistant steel[J]. Mater. Des., 2014, 54: 874
[11] Yan P, Liu Z D, Bao H S, et al.Effect of microstructural evolution on high-temperature strength of 9Cr-3W-3Co martensitic heat resistant steel under different aging conditions[J]. Mater. Sci. Eng., 2013, A588: 22
[12] Yan P, Liu Z D, Bao H S, et al.Effect of normalizing temperature on the strength of 9Cr-3W-3Co martensitic heat resistant steel[J]. Mater. Sci. Eng., 2014, A597: 148
[13] Tan L, Yang Y, Allen T R.Oxidation behavior of iron-based alloy HCM12A exposed in supercritical water[J]. Corros. Sci., 2006, 48: 3123
[14] Zhang N Q, Zhu Z L, Xu H, et al.Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water[J]. Corros. Sci., 2016, 103: 124
[15] Bischoff J, Motta A T, Eichfeld C, et al.Corrosion of ferritic-martensitic steels in steam and supercritical water[J]. J. Nucl. Mater., 2013, 441: 604
[16] Yin K J, Qiu S Y, Tang R, et al.Corrosion behavior of ferritic/martensitic steel P92 in supercritical water[J]. J. Supercrit. Fluid., 2009, 50: 235
[17] Viswanathan R, Sarver J, Tanzosh J M.Boiler materials for ultra-supercritical coal power plants—Steamside oxidation[J] J. Mater. Eng. Perform., 2006, 15: 255
[18] Oksa M, Tuurna S, Mets?joki J, et al.Oxidation performance coating for future supercritical power plants[J]. J. Nucl. Eng. Radiat. Sci., 2016, 2: 011018
[19] Agüero A, González V, Mayr P, et al.Anomalous steam oxidation behavior of a creep resistant martensitic 9 wt. % Cr steel[J]. Mater. Chem. Phys., 2013, 141: 432
[20] Agüero A, González V, Gutiérrez M, et al.Oxidation under pure steam: Cr based protective oxides and coatings[J]. Surf. Coat. Technol., 2013, 237: 30
[21] ?urek J, De Bruycker E, Huysmans S, et al.Steam oxidation of 9% to 12%Cr steels: Critical evaluation and implications for practical application[J]. Corrosion, 2014, 70: 112
[22] Yu X L, Jiang Z Y, Zhao J W, et al.Effect of a grain-refined microalloyed steel substrate on the formation mechanism of a tight oxide scale[J]. Corros. Sci., 2014, 85: 115
[23] Gao R, Xia L L, Zhang T, et al.Oxidation resistance in LBE and air and tensile properties of ODS ferritic steels containing Al/Zr elements[J]. J. Nucl. Mater., 2014, 455: 407
[24] Jacob Y,Haanappel V A C,Stroosnijder M F, et al.The effect of gas composition on the isothermal oxidation behaviour of PM chromium[J]. Corros. Sci., 2002, 44: 2027
[25] Jonsson T, Pujilaksono B, Heidari H, et al.Oxidation of Fe-10Cr in O2 and in O2 + H2O environment at 600 ℃: A microstructural investigation[J]. Corros. Sci., 2013, 75: 326
[26] Meier G H, Jung K, Mu N, et al.Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr-X alloys[J]. Oxid. Met., 2010, 74: 319
[27] Abe F, Kutsumi H, Haruyama H, et al.Improvement of oxidation resistance of 9 mass% chromium steel for advanced-ultra supercritical power plant boilers by pre-oxidation treatment[J]. Corros. Sci., 2017, 114: 1
[28] Zhou R C, Tang L Y, Wang H Z, et al. High temperature steam oxidation test device [P]. Chin Pat, CN101118211, 2008(周荣灿, 唐丽英, 王弘喆等. 高温蒸汽氧化试验装置 [P]. 中国专利, CN101118211, 2008)
[29] ?urek J, Michalik M, Schmitz F, et al.The effect of water-vapor content and gas flow rate on the oxidation mechanism of a 10%Cr-ferritic steel in Ar-H2O mixtures[J]. Oxid. Met., 2005, 63: 401
[30] Schütze M, Renusch D, Schorr M.Chemical-mechanical failure of oxide scales on 9% Cr steels in air with H2O[J]. Mater. High Temp., 2005, 22: 113
[31] Holcomb G H.Steam oxidation and chromia evaporation in ultra-supercritical steam boilers and turbines[J]. J. Electrochem. Soc., 2009, 156: C292
[1] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[2] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[3] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[4] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[5] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[6] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[7] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[8] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[9] 杨亮, 吕皓天, 万春磊, 巩前明, 陈浩, 张弛, 杨志刚. 综述:活性元素作用机理——氧化物“钉扎”模型[J]. 金属学报, 2021, 57(2): 182-190.
[10] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[11] 李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473.
[12] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[13] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[14] 高博, 王磊, 宋秀, 刘杨, 杨舒宇, 千叶晶彦. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响[J]. 金属学报, 2019, 55(10): 1273-1281.
[15] 张文颖, 李俊, 周波. 金属连接体涂层材料MnCo2O4尖晶石的氧化动力学行为和电性能*[J]. 金属学报, 2016, 52(3): 355-360.