Please wait a minute...
金属学报  2021, Vol. 57 Issue (10): 1291-1298    DOI: 10.11900/0412.1961.2020.00320
  研究论文 本期目录 | 过刊浏览 |
FeCrNiMo激光熔覆层组织与摩擦磨损行为
赵万新1, 周正1(), 黄杰1, 杨延格2, 杜开平3, 贺定勇1
1.北京工业大学 材料与制造学部 北京 100124
2.中国科学院金属研究所 沈阳 110016
3.矿冶科技集团有限公司 北京 100160
Microstructure and Frictional Wear Behavior of FeCrNiMo Alloy Layer Fabricated by Laser Cladding
ZHAO Wanxin1, ZHOU Zheng1(), HUANG Jie1, YANG Yange2, DU Kaiping3, HE Dingyong1
1.Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.BGRIMM Technology Group, Beijing 100160, China
引用本文:

赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
Wanxin ZHAO, Zheng ZHOU, Jie HUANG, Yange YANG, Kaiping DU, Dingyong HE. Microstructure and Frictional Wear Behavior of FeCrNiMo Alloy Layer Fabricated by Laser Cladding[J]. Acta Metall Sin, 2021, 57(10): 1291-1298.

全文: PDF(2665 KB)   HTML
摘要: 

为满足马氏体不锈钢熔覆层的高效制备需求,在合金成分优化基础上,采用激光熔覆技术制备了单层厚度超过2 mm的FeCrNiMo合金熔覆层,并对其微观组织结构与摩擦磨损行为进行了研究。结果表明,熔覆层厚度均匀,无明显裂纹等缺陷,组织从表面沿厚度方向依次为等轴晶、树枝晶、胞状晶,枝晶内为马氏体,晶间为富Cr、Mo元素的铁素体。在环-块摩擦磨损形式下,随着施加载荷加大,摩擦系数和磨损量逐渐增加;熔覆层以磨粒磨损和氧化磨损机制为主,但在高载荷下黏着磨损倾向增大。在球盘往复摩擦磨损形式下,随温度升高,摩擦系数下降,熔覆层发生热软化,磨损量增加;熔覆层以氧化磨损和疲劳磨损机制为主。

关键词 激光熔覆FeCrNiMo不锈钢微观组织摩擦磨损    
Abstract

To satisfy the requirement for martensite stainless steel layers with high efficiency, an optimized FeNiCrMo alloy layer was prepared using the laser cladding technique. The microstructure and frictional wear behavior of the cladding layer (a single layer with a thickness exceeding 2 mm) were investigated. The results confirmed a homogeneous thickness and crack-free character of the cladding layer. In the microstructure, equiaxed, dendritic and cellular grains were distributed along the thickness direction, and martensite and Cr/Mo-rich ferrite were observed in the dendritic and inter-dendritic regions, respectively. The frictional coefficient and wear volume of the cladding layer increased under increasing applied loads in a block-on-ring wear test, and the wear mechanism was dominated by abrasive and oxidative wear types. Under higher loads, adhesive wear prevailed. In a ball-on-disc wear test, increasing the temperature decreased the frictional coefficient and increased the wear volume. Oxidative and fatigue wear dominated the wear mechanism under this condition.

Key wordslaser cladding    FeCrNiMo stainless steel    microstructure    frictional wear
收稿日期: 2020-08-21     
ZTFLH:  TG174.4  
基金资助:国家重点研发计划项目(2017YFB0306100)
作者简介: 赵万新,男,1994年生,硕士生
图1  熔覆层表面XRD谱
图2  熔覆层沿厚度方向的微观组织
AreaRegionFeCrNiMoSiMn
ADR83.313.21.20.61.10.6
IDR75.520.51.21.40.90.5
BDR83.712.91.10.51.20.6
IDR73.621.91.11.31.20.9
CDR82.413.51.30.81.01.0
IDR74.420.81.21.61.20.8
表1  图2中熔覆层微区EDS结果 (mass fraction / %)
图3  熔覆层沿厚度方向的显微硬度
图4  不同载荷下熔覆层摩擦系数-时间曲线
图5  不同载荷下熔覆层磨损体积与磨损率
图6  熔覆层在不同载荷下表面磨损形貌
图7  熔覆层磨损机制随载荷增加演变示意图(a) test model (b) 50 N (c) 150 N (d) 300 N
PointFeCrNiMoSiMnO
173.916.41.41.10.90.76.6
272.814.71.51.30.80.98.0
356.56.30.80.70.50.634.6
466.812.61.40.70.60.717.2
表2  图6中磨损表面各点EDS分析 (mass fraction / %)
图8  不同温度下熔覆层摩擦系数-时间曲线
图9  不同温度下熔覆层磨损体积与磨损率
图10  熔覆层表面硬度随温度变化规律
图11  熔覆层在不同温度下表面磨痕形貌
PointFeCrNiMoSiMnO
173.716.41.41.11.50.75.2
243.610.70.91.37.70.934.9
374.511.31.01.01.20.910.1
457.17.10.70.53.30.430.9
559.010.12.01.41.40.625.5
表3  图11中磨损表面各点EDS分析 (mass fraction / %)
图12  熔覆层磨损机制随温度升高演变示意图(a) test model (b) 25oC (c) 300oC (d) 600oC
1 Song J L, Li Y T, Deng Q L, et al. Research progress of laser cladding forming technology [J]. J. Mech. Eng., 2010, 46(14): 29
1 宋建丽, 李永堂, 邓琦林等. 激光熔覆成形技术的研究进展 [J]. 机械工程学报, 2010, 46(14): 29
2 Vilar R. Laser cladding [J]. J. Laser Appl., 1999, 11: 64
3 Sexton L, Lavin S, Byrne G, et al. Laser cladding of aerospace materials [J]. J. Mater. Process. Technol., 2002, 122(1): 63
4 Zhang H, Zou Y, Zou Z D, et al. Effects of CeO2 on microstructure and corrosion resistance of TiC-VC reinforced Fe-based laser cladding layers [J]. J. Rare Earth., 2014, 32: 1095
5 Zhou S F, Xu Y B, Liao B Q, et al. Effect of laser remelting on microstructure and properties of WC reinforced Fe-based amorphous composite coatings by laser cladding [J]. Opt. Laser Technol., 2018, 103: 8
6 Lewis S R, Fretwell-Smith D, Goodwin P S, et al. Improving rail wear and RCF performance using laser cladding [J]. Wear, 2016, 366-367: 268
7 Gao W Y, Zhang Z Y, Zhao S S, et al. Effect of a small addition of Ti on the Fe-based coating by laser cladding [J]. Surf. Coat. Technol., 2016, 291: 423
8 Tian J Y, Peng X, Liu Q B. Effects of stress-induced solid phase transformations on residual stress in laser cladding a Fe-Mn-Si-Cr-Ni alloy coating [J]. Mater. Des., 2020, 193: 108824
9 Yang L J, Zhang P X, Wang S P, et al. Microstructure and wear behavior of hard Ni60 and soft WC-12Co/Ni25 coatings prepared by laser cladding on W1813N non-magnetic stainless steel [J]. Rare Met. Mater. Eng., 2019, 48: 3441
9 杨理京, 张平祥, 王少鹏等. W1813N无磁不锈钢表面激光熔覆Ni60与WC-12Co/Ni25涂层的组织结构和磨损行为 [J]. 稀有金属材料与工程, 2019, 48: 3441
10 Fesharaki M N, Shoja-Razavi R, Mansouri H A, et al. Microstructure investigation of Inconel 625 coating obtained by laser cladding and TIG cladding methods [J]. Surf. Coat. Technol., 2018, 353: 25
11 Du L M, Lan L W, Zhu S, et al. Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2019, 35: 917
12 Goodarzi D M, Pekkarinen J, Salminen A. Analysis of laser cladding process parameter influence on the clad bead geometry [J]. Weld. World, 2017, 61: 883
13 El-Batahgy A M. Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels [J]. Mater. Lett., 1997, 32: 155
14 Zhang C, Wu B Q, Wang Q T, et al. Microstructure and properties of FeCrNiCoMnBx high-entropy alloy coating prepared by laser cladding [J]. Rare Met. Mater. Eng., 2017, 46: 2639
14 张 冲, 吴炳乾, 王乾廷等. 激光熔覆FeCrNiCoMnBx高熵合金涂层的组织结构与性能 [J]. 稀有金属材料与工程, 2017, 46: 2639
15 Liu Y, Li A, Cheng X, et al. Effects of heat treatment on microstructure and tensile properties of laser melting deposited AISI 431 martensitic stainless steel [J]. Mater. Sci. Eng., 2016, A666: 27
16 Zacharia T, David S A, Vitek J M, et al. Heat transfer during Nd:Yag pulsed laser welding and its effect on solidification structure of austenitic stainless steels [J]. Metall. Trans., 1989, 20A: 957
17 Zuo W J, Gu K X, Cui C, et al. Microstructure evolution and wear behavior of titanium alloy under cryogenic dry sliding wear condition [J]. Mater. Charact., 2020, 165: 110385
18 Pathak J P, Mohan S, Singh V. Wear behaviour of titanium alloy GTM-900 under dry sliding [J]. Indian J. Eng. Mater. Sci., 2002, 9: 351
19 Wu P, Zhou C C, Tang X N. Wear characteristics of Ni-base alloy and Ni/WC coatings by laser cladding [J]. Acta Metall. Sin., 2002, 38: 1257
19 吴 萍, 周昌炽, 唐西南. 激光熔覆镍基合金和Ni/WC涂层的磨损特性 [J]. 金属学报, 2002, 38: 1257
20 Winter T C, Neu R W, Singh P M, et al. Fretting wear comparison of cladding materials for reactor fuel cladding application [J]. J. Nucl. Mater., 2018, 508: 505
21 Cui G J, Wei J, Wu G X. Wear behavior of Fe-Cr-B alloys under dry sliding condition [J]. Ind. Lubr. Tribol., 2015, 67: 336
22 Yong Y W, Zhang X, Fu W, et al. Behavior characteristics of in-situ formed ZrC particle reinforcement composite coating by laser cladding [J]. Rare Met. Mater. Eng., 2018, 47: 1625
22 雍耀维, 张 翔, 傅 卫等. 激光熔覆原位制备ZrC颗粒增强涂层的行为特征 [J]. 稀有金属材料与工程, 2018, 47: 1625
23 Sahoo R, Jha B B, Sahoo T K. Experimental study on the effect of microstructure on dry sliding wear behavior of titanium alloy using Taguchi experimental design [J]. Tribol. Trans., 2014, 57: 216
24 Li B, Shen Y F, Hu W Y, et al. Surface modification of Ti-6Al-4V alloy via friction-stir processing: Microstructure evolution and dry sliding wear performance [J]. Surf. Coat. Technol., 2014, 239: 160
25 Xuan X B, Cui G J. Tribological properties of Fe-Cr-B alloy for sliding boot in coal mining machine under dry sliding condition [J]. Ind. Lubr. Tribol., 2017, 69: 142
26 Pole M, Sadeghilaridjani M, Shittu J, et al. High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette [J]. J. Alloys Compd., 2020, 843: 156004
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[6] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[7] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[8] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[9] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[10] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[13] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[14] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[15] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.