|
|
FeCrNiMo激光熔覆层组织与摩擦磨损行为 |
赵万新1, 周正1( ), 黄杰1, 杨延格2, 杜开平3, 贺定勇1 |
1.北京工业大学 材料与制造学部 北京 100124 2.中国科学院金属研究所 沈阳 110016 3.矿冶科技集团有限公司 北京 100160 |
|
Microstructure and Frictional Wear Behavior of FeCrNiMo Alloy Layer Fabricated by Laser Cladding |
ZHAO Wanxin1, ZHOU Zheng1( ), HUANG Jie1, YANG Yange2, DU Kaiping3, HE Dingyong1 |
1.Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.BGRIMM Technology Group, Beijing 100160, China |
引用本文:
赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
Wanxin ZHAO,
Zheng ZHOU,
Jie HUANG,
Yange YANG,
Kaiping DU,
Dingyong HE.
Microstructure and Frictional Wear Behavior of FeCrNiMo Alloy Layer Fabricated by Laser Cladding[J]. Acta Metall Sin, 2021, 57(10): 1291-1298.
1 |
Song J L, Li Y T, Deng Q L, et al. Research progress of laser cladding forming technology [J]. J. Mech. Eng., 2010, 46(14): 29
|
1 |
宋建丽, 李永堂, 邓琦林等. 激光熔覆成形技术的研究进展 [J]. 机械工程学报, 2010, 46(14): 29
|
2 |
Vilar R. Laser cladding [J]. J. Laser Appl., 1999, 11: 64
|
3 |
Sexton L, Lavin S, Byrne G, et al. Laser cladding of aerospace materials [J]. J. Mater. Process. Technol., 2002, 122(1): 63
|
4 |
Zhang H, Zou Y, Zou Z D, et al. Effects of CeO2 on microstructure and corrosion resistance of TiC-VC reinforced Fe-based laser cladding layers [J]. J. Rare Earth., 2014, 32: 1095
|
5 |
Zhou S F, Xu Y B, Liao B Q, et al. Effect of laser remelting on microstructure and properties of WC reinforced Fe-based amorphous composite coatings by laser cladding [J]. Opt. Laser Technol., 2018, 103: 8
|
6 |
Lewis S R, Fretwell-Smith D, Goodwin P S, et al. Improving rail wear and RCF performance using laser cladding [J]. Wear, 2016, 366-367: 268
|
7 |
Gao W Y, Zhang Z Y, Zhao S S, et al. Effect of a small addition of Ti on the Fe-based coating by laser cladding [J]. Surf. Coat. Technol., 2016, 291: 423
|
8 |
Tian J Y, Peng X, Liu Q B. Effects of stress-induced solid phase transformations on residual stress in laser cladding a Fe-Mn-Si-Cr-Ni alloy coating [J]. Mater. Des., 2020, 193: 108824
|
9 |
Yang L J, Zhang P X, Wang S P, et al. Microstructure and wear behavior of hard Ni60 and soft WC-12Co/Ni25 coatings prepared by laser cladding on W1813N non-magnetic stainless steel [J]. Rare Met. Mater. Eng., 2019, 48: 3441
|
9 |
杨理京, 张平祥, 王少鹏等. W1813N无磁不锈钢表面激光熔覆Ni60与WC-12Co/Ni25涂层的组织结构和磨损行为 [J]. 稀有金属材料与工程, 2019, 48: 3441
|
10 |
Fesharaki M N, Shoja-Razavi R, Mansouri H A, et al. Microstructure investigation of Inconel 625 coating obtained by laser cladding and TIG cladding methods [J]. Surf. Coat. Technol., 2018, 353: 25
|
11 |
Du L M, Lan L W, Zhu S, et al. Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2019, 35: 917
|
12 |
Goodarzi D M, Pekkarinen J, Salminen A. Analysis of laser cladding process parameter influence on the clad bead geometry [J]. Weld. World, 2017, 61: 883
|
13 |
El-Batahgy A M. Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels [J]. Mater. Lett., 1997, 32: 155
|
14 |
Zhang C, Wu B Q, Wang Q T, et al. Microstructure and properties of FeCrNiCoMnBx high-entropy alloy coating prepared by laser cladding [J]. Rare Met. Mater. Eng., 2017, 46: 2639
|
14 |
张 冲, 吴炳乾, 王乾廷等. 激光熔覆FeCrNiCoMnBx高熵合金涂层的组织结构与性能 [J]. 稀有金属材料与工程, 2017, 46: 2639
|
15 |
Liu Y, Li A, Cheng X, et al. Effects of heat treatment on microstructure and tensile properties of laser melting deposited AISI 431 martensitic stainless steel [J]. Mater. Sci. Eng., 2016, A666: 27
|
16 |
Zacharia T, David S A, Vitek J M, et al. Heat transfer during Nd:Yag pulsed laser welding and its effect on solidification structure of austenitic stainless steels [J]. Metall. Trans., 1989, 20A: 957
|
17 |
Zuo W J, Gu K X, Cui C, et al. Microstructure evolution and wear behavior of titanium alloy under cryogenic dry sliding wear condition [J]. Mater. Charact., 2020, 165: 110385
|
18 |
Pathak J P, Mohan S, Singh V. Wear behaviour of titanium alloy GTM-900 under dry sliding [J]. Indian J. Eng. Mater. Sci., 2002, 9: 351
|
19 |
Wu P, Zhou C C, Tang X N. Wear characteristics of Ni-base alloy and Ni/WC coatings by laser cladding [J]. Acta Metall. Sin., 2002, 38: 1257
|
19 |
吴 萍, 周昌炽, 唐西南. 激光熔覆镍基合金和Ni/WC涂层的磨损特性 [J]. 金属学报, 2002, 38: 1257
|
20 |
Winter T C, Neu R W, Singh P M, et al. Fretting wear comparison of cladding materials for reactor fuel cladding application [J]. J. Nucl. Mater., 2018, 508: 505
|
21 |
Cui G J, Wei J, Wu G X. Wear behavior of Fe-Cr-B alloys under dry sliding condition [J]. Ind. Lubr. Tribol., 2015, 67: 336
|
22 |
Yong Y W, Zhang X, Fu W, et al. Behavior characteristics of in-situ formed ZrC particle reinforcement composite coating by laser cladding [J]. Rare Met. Mater. Eng., 2018, 47: 1625
|
22 |
雍耀维, 张 翔, 傅 卫等. 激光熔覆原位制备ZrC颗粒增强涂层的行为特征 [J]. 稀有金属材料与工程, 2018, 47: 1625
|
23 |
Sahoo R, Jha B B, Sahoo T K. Experimental study on the effect of microstructure on dry sliding wear behavior of titanium alloy using Taguchi experimental design [J]. Tribol. Trans., 2014, 57: 216
|
24 |
Li B, Shen Y F, Hu W Y, et al. Surface modification of Ti-6Al-4V alloy via friction-stir processing: Microstructure evolution and dry sliding wear performance [J]. Surf. Coat. Technol., 2014, 239: 160
|
25 |
Xuan X B, Cui G J. Tribological properties of Fe-Cr-B alloy for sliding boot in coal mining machine under dry sliding condition [J]. Ind. Lubr. Tribol., 2017, 69: 142
|
26 |
Pole M, Sadeghilaridjani M, Shittu J, et al. High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette [J]. J. Alloys Compd., 2020, 843: 156004
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|