Please wait a minute...
金属学报  2022, Vol. 58 Issue (4): 486-502    DOI: 10.11900/0412.1961.2021.00522
  综述 本期目录 | 过刊浏览 |
无模板电沉积金属微纳米阵列材料研究进展
杭弢, 薛琦, 李明()
上海交通大学 材料科学与工程学院 上海 200240
A Review on Metal Micro-Nanostructured Array Materials Routed by Template-Free Electrodeposition
HANG Tao, XUE Qi, LI Ming()
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

杭弢, 薛琦, 李明. 无模板电沉积金属微纳米阵列材料研究进展[J]. 金属学报, 2022, 58(4): 486-502.
Tao HANG, Qi XUE, Ming LI. A Review on Metal Micro-Nanostructured Array Materials Routed by Template-Free Electrodeposition[J]. Acta Metall Sin, 2022, 58(4): 486-502.

全文: PDF(5916 KB)   HTML
摘要: 

金属微纳米阵列材料以其独特的结构和物理化学性质,被广泛应用于电子、能源及生物等领域。无模板电沉积制备金属微纳米阵列材料具有形状尺寸可控性高、制备成本低、可大规模生产等优点,有广阔的应用前景。本文结合作者实验室近年来的研究工作,对无模板电沉积制备金属微纳米阵列材料的研究进行了系统总结,分别从无模板电沉积方法、金属微纳米阵列材料的研究现状和形成机理、金属微纳米阵列材料在各领域的应用现状及未来展望等方面进行了介绍和评述,以期对本领域未来的研究工作给予借鉴和启迪,从而进一步推动无模板电沉积金属微纳米阵列材料的应用与发展。

关键词 无模板电沉积金属微纳米阵列    
Abstract

Due to their unique structure and physicochemical properties, metal micro-nanostructured array materials are commonly used in optics, magnetism, electricity, catalysis, and other fields. The preparation of metal micro-nanostructured array materials by electrochemical technology has the advantages of high controllability, simple preparation without a template, and large-scale production, giving it broad application prospects. This review systematically summarizes the recent progress in the field of preparing metal micro-nanostructured array materials using electrochemical technology, combining recent work by the author's team. Furthermore, this review also introduces and comments on the feasibility of electrochemical methods without a template, the research status and formation mechanism of metal micro-nanostructured array materials, the application status of metal micro-nanostructured array in various fields, and future development challenges. This review is expected to serve as a useful source of reference and educational tool for future research in this field, thereby promoting the application and development of this template-free electrodeposition method.

Key wordstemplate-free    electrodeposition    metal    micro-nanostructured array
收稿日期: 2021-12-01     
ZTFLH:  TQ153  
基金资助:国家自然科学基金项目(21972091)
作者简介: 杭 弢,男,1982年生,教授,博士
图1  不同晶面生长速率不同时的晶体生长,及结晶调整剂对纳米针锥长径比的作用机理
图2  电沉积制备的Ni[14]、Co[15]、Cu[17]、Ni-Co[16]金属纳米针锥阵列材料,及金属Ni纳米针锥阵列的形成机制示意图
图3  电化学沉积制备金属Ag[31,32]、Co[22,33]、Pd[34]、Rh[36]纳米片阵列材料
图4  电沉积制备金属Pd[43]、Pd-Ni[44]、Co[45]、Cu[46]纳米线结构及金属Pd纳米棒阵列[47]
图5  电化学沉积制备Pt[48,49]、Au[51]、Ag[52,53]、Bi[54]纳米花阵列材料,及Pt纳米花形成机理示意图[49]
图6  电沉积Ni纳米针锥阵列以及Ni-Si核壳纳米针锥阵列[61],电沉积制备的Ni纳米针锥以及Ni-Si复合多级结构示意图[63],电沉积制备的Co纳米山阵列及Co-Si三维纳米山阵列电极[64]
图7  Cu-Ni纳米针锥分级阵列结构以及3种不同组分Cu-Ni纳米针锥分级结构和平面Ni的Tafel曲线[75],及Pt纳米花(曲线a)和Pt纳米晶(曲线b)在甲醇溶液中的循环伏安曲线和计时电位曲线[48]
图8  电沉积制备的Au纳米花的超疏水特性[51],Au-Ni纳米针锥阵列结构的超疏水特性[85],及不同针锥高度下的镍纳米针锥润湿特性和4种不同表面的润湿性示意图[80]
图9  微纳米阵列材料(Ag纳米片、Ag纳米花、Au NP@Ni NC以及Au NB@Ni NC)的SEM像和SERS研究[38,53,60,89]
图10  微纳米阵列(纳米Ni针锥阵列预镀钯(Pd PPF),微纳米Ni、Cu、Cu-Ni针锥阵列,单层石墨烯复合微纳米Cu针锥阵列,Au-Ni纳米针锥阵列)与封装树脂、镀锡帽铜柱、焊料、Au线键合示意图及键合界面SEM像[90~93,96,97]
1 Roduner E. Size matters: Why nanomaterials are different [J]. Chem. Soc. Rev., 2006, 35: 583
2 Lin J T, Liao C C, Hsu C S, et al. Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21 [J]. J. Am. Chem. Soc., 2019, 141: 10324
3 Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state [J]. J. Chem. Phys., 1984, 80: 4403
4 Xie Y D, Kocaefe D, Chen C Y, et al. Review of research on template methods in preparation of nanomaterials [J]. J. Nanomater., 2016, 2016: 2302595
5 Hatab N A A, Oran J M, Sepaniak M J. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing [J]. ACS Nano, 2008, 2: 377
6 Jain P K, Huang W Y, El-Sayed M A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation [J]. Nano Lett., 2007, 7: 2080
7 Li W Q, Wang G, Zhang X N, et al. Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection [J]. Nanoscale, 2015, 7: 15487
8 Huang Z L, Meng G W, Huang Q, et al. Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs [J]. J. Raman Spectrosc., 2013, 44: 240
9 Dai H J, Wong E W, Lu Y Z, et al. Synthesis and characterization of carbide nanorods [J]. Nature, 1995, 375: 769
10 Apel P. Track etching technique in membrane technology [J]. Radiat. Measur., 2001, 34: 559
11 Tang Y H, Wang N, Zhang Y F, et al. Synthesis and characterization of amorphous carbon nanowires [J]. Appl. Phys. Lett., 1999, 75: 2921
12 Wu Y Y, Yang P D. Germanium nanowire growth via simple vapor transport [J]. Chem. Mater., 2000, 31: 605
13 Duan X, Lieber C M. General synthesis of compound semiconductor nanowires [J]. Adv. Mater., 2010, 12: 298
14 Hang T, Li M, Fei Q, et al. Characterization of nickel nanocones routed by electrodeposition without any template [J]. Nanotechnology, 2008, 19: 035201
15 Hang T, Hu A M, Li M, et al. Structural control of a cobalt nanocone array grown by directional electrodeposition [J]. CrystEngComm, 2010, 12: 2799
16 Wang N, Hang T, Shanmugam S, et al. Preparation and characterization of nickel-cobalt alloy nanostructures array fabricated by electrodeposition [J]. CrystEngComm, 2014, 16: 6937
17 Deng Y P, Ling H Q, Feng X, et al. Electrodeposition and characterization of copper nanocone structures [J]. CrystEngComm, 2015, 17: 868
18 Wu H H. Principle of Electrodics [M]. Xiamen: Xiamen University Press, 1991: 35
18 吴辉煌. 电极学原理 [M]. 厦门: 厦门大学出版社, 1991: 35
19 Zhou S M. Metal Electrodeposition: Principle and Research Method [M]. Shanghai: Shanghai Science and Technology Press, 1987: 56
19 周绍民. 金属电沉积: 原理与研究方法 [M]. 上海: 上海科学技术出版社, 1987: 56
20 Hertz G. Modern electrochemistry [J]. Z. Phys. Chem., 1999, 212: 233
21 Hang T. Study on the nickel micro-nanocones array materials fabricated by electrodeposition [D]. Shanghai: Shanghai Jiao Tong University, 2010
21 杭 弢. 镍微纳米针锥阵列材料的电沉积制备与性能研究 [D]. 上海: 上海交通大学, 2010
22 Xu L X, Zhang S C, Liu W B, et al. Vertically cobalt nanoplate arrays based on one-step electrochemical growth and their magnetic properties [J]. J. Phys. Chem., 2012, 116C: 2801
23 Watanabe T, translated by Chen Z P, Yang G. Nano-Plating [M]. Beijing: Chemical Industry Press, 2007: 25
23 渡边辙著, 陈祝平, 杨 光 译. 纳米电镀 [M]. 北京: 化学工业出版社, 2007: 25
24 Lee J M, Jung K K, Lee S H, et al. One-step fabrication of nickel nanocones by electrodeposition using CaCl2·2H2O as capping reagent [J]. Appl. Surf. Sci., 2016, 369: 163
25 Damjanovic A, Paunovic M, Bockris J O M. The mechanism of step propagation and pyramid formation on the (100) plane of copper from in situ nomarski-optical studies [J]. J. Electroanal. Chem., 1965, 9: 93
26 Nageswar S. Electrodeposition of copper on a copper single crystal (111) face in the presence of bromide ions [J]. Electrodeposition Surf. Treat., 1975, 3: 369
27 Chen Z, Zhu C, Cai M L, et al. Growth and morphology tuning of ordered nickel nanocones routed by one-step pulse electrodeposition [J]. Appl. Surf. Sci., 2020, 508: 145291
28 Skibinska K, Kolczyk-Siedlecka K, Kutyla D, et al. Electrocatalytic properties of Co nanoconical structured electrodes produced by a one-step or two-step method [J]. Catalysts, 2021, 11: 544
29 Kim M J, Alvarez S, Chen Z H, et al. Single-crystal electrochemistry reveals why metal nanowires grow [J]. J. Am. Chem. Soc., 2018, 140: 14740
30 Rahimi E, Rafsanjani-Abbasi A, Imani A, et al. Synergistic effect of a crystal modifier and screw dislocation step defects on the formation mechanism of nickel micro-nanocone [J]. Mater. Lett., 2019, 245: 68
31 Xia Y Q, Wu Y W, Hang T, et al. Electrodeposition of high density silver nanosheets with controllable morphologies served as effective and reproducible SERS substrates [J]. Langmuir, 2016, 32: 3385
32 Wu Y W, Hang T, Yu Z Y, et al. Quasi-periodical 3D hierarchical silver nanosheets with sub-10 nm nanogap applied as an effective and applicable SERS substrate [J]. Adv. Mater. Interfaces, 2015, 2: 1500359
33 Bao Z L, Kavanagh K L. Aligned Co nanodiscs by electrodeposition on GaAs [J]. J. Cryst. Growth, 2006, 287: 514
34 Jia F L, Wong K W, Du R X. Direct growth of highly catalytic palladium nanoplates array onto gold substrate by a template-free electrochemical route [J]. Electrochem. Commun., 2009, 11: 519
35 Jia F L, Wong K W, Zhang L Z. Electrochemical synthesis of nanostructured palladium of different morphology directly on gold substrate through a cyclic deposition/dissolution route [J]. J. Phys. Chem., 2009, 113C: 7200
36 Li Y Y, Diao P, Jin T, et al. Shape-controlled electrodeposition of standing Rh nanoplates on indium tin oxide substrates and their electrocatalytic activity toward formic acid oxidation [J]. Electrochim. Acta, 2012, 83: 146
37 Liu G Q, Cai W P, Liang C H. Trapeziform Ag nanosheet arrays induced by electrochemical deposition on Au-coated substrate [J]. Cryst. Growth Des., 2008, 8: 2748
38 Liu G Q, Cai W P, Kong L C, et al. Vertically cross-linking silver nanoplate arrays with controllable density based on seed-assisted electrochemical growth and their structurally enhanced SERS activity [J]. J. Mater. Chem., 2010, 20: 767
39 Yang S K, Slotcavage D, Mai J D, et al. Electrochemically created highly surface roughened Ag nanoplate arrays for SERS biosensing applications [J]. J. Mater. Chem., 2014, 2C: 8350
40 Liu G Q, Duan G T, Jia L C, et al. Fabrication of self-standing silver nanoplate arrays by seed-decorated electrochemical route and their structure-induced properties [J]. J. Nanomater., 2013, 2013: 365947
41 Wu Q Y, Diao P, Sun J, et al. Electrodeposition of vertically aligned silver nanoplate arrays on indium Tin oxide substrates [J]. J. Phys. Chem., 2015, 119C: 20709
42 Lin C C, Juo T J, Chen Y J, et al. Enhanced cyclic voltammetry using 1-D gold nanorods synthesized via AAO template electrochemical deposition [J]. Desalination, 2008, 233: 113
43 Corduneanu O, Diculescu V C, Chiorcea-Paquim A M, et al. Shape-controlled palladium nanowires and nanoparticles electrodeposited on carbon electrodes [J]. J. Electroanal. Chem., 2008, 624: 97
44 Xiao Y K, Yu G, Yuan J, et al. Fabrication of Pd-Ni alloy nanowire arrays on HOPG surface by electrodeposition [J]. Electrochim. Acta, 2006, 51: 4218
45 Huang X P, Han W, Shi Z L, et al. Electrodeposition of periodically nanostructured straight cobalt filament arrays [J]. J. Phys. Chem., 2010, 113C: 1694
46 Zhang M Z, Zuo G H, Zong Z C, et al. Self-assembly of copper micro/nanoscale parallel wires by electrodeposition on a silicon substrate [J]. Small, 2006, 2: 727
47 Tian N, Zhou Z Y, Sun S G. Electrochemical preparation of Pd nanorods with high-index facets [J]. Chem. Commun., 2009, (12): 1502
48 Zhang H M, Zhou W Q, Du Y K, et al. One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation [J]. Electrochem. Commun., 2010, 12: 882
49 Li Y X, Xian H Y, Zhou Y. Formation of platinum nanoflowers on 3-aminopropyltriethoxysilane monolayer: Growth mechanism and electrocatalysis [J]. Appl. Catal., 2011, 401A: 226
50 Nguyen T L, Cao V H, Yen Pham T H, et al. Fabrication of nano flower-shaped platinum on glassy carbon electrode as a sensitive sensor for lead electrochemical analysis [J]. Electroanalysis, 2019, 31: 2538
51 Wang L, Guo S J, Hu X G, et al. Facile electrochemical approach to fabricate hierarchical flowerlike gold microstructures: Electrodeposited superhydrophobic surface [J]. Electrochem. Commun., 2008, 10: 95
52 Tang S C, Meng X K, Wang C C, et al. Flowerlike Ag microparticles with novel nanostructure synthesized by an electrochemical approach [J]. Mater. Chem. Phys., 2009, 114: 842
53 Bian J C, Li Z, Chen Z D, et al. Double-potentiostatic electrodeposition of Ag nanoflowers on ITO glass for reproducible surface-enhanced (resonance) Raman scattering application [J]. Electrochim. Acta, 2012, 67: 12
54 Liu X Y, Sun P, Ren S, et al. Electrodeposition of high-pressure-stable bcc phase bismuth flowerlike micro/nanocomposite architectures at room temperature without surfactant [J]. Electrochem. Commun., 2008, 10: 136
55 Yang J M, Hsieh Y T, Chu-Tien T T, et al. Electrodeposition of distinct one-dimensional Zn biaxial microbelt from the zinc chloride-1-Ethyl-3-methylidazolium Chloride Ionic Liquid [J]. J. Electrochem. Soc., 2011, 158: D235
56 Yang J M, Gou S P, Sun I W. Single-step large-scale and template-free electrochemical growth of Ni-Zn alloy filament arrays from a zinc chloride based ionic liquid [J]. Chem. Commun., 2010, 46: 2686
57 Xu D, Yan X H, Diao P, et al. Electrodeposition of vertically aligned palladium nanoneedles and their application as active substrates for surface-enhanced raman scattering [J]. J. Phys. Chem., 2014, 118C: 9758
58 Wang H Z, Hu A M, Li M. Synthesis of hierarchical mushroom-like cobalt nanostructures based on one-step galvanostatic electrochemical deposition [J]. CrystEngComm, 2014, 16: 8015
59 Liu X J, Long L, Yang W X, et al. Facilely electrodeposited coral-like copper micro-/nano-structure arrays with excellent performance in glucose sensing [J]. Sens. Actuat., 2018, 266B: 853
60 Xia Y Y, Wu Y W, Wu L W, et al. Two-step electrodeposited 3D Ni nanocone supported au nanoball arrays as SERS substrate [J]. J. Electrochem. Soc., 2020, 167: 142502
61 Zhang S D, Du Z J, Lin R X, et al. Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries [J]. Adv. Mater., 2010, 22: 5378
62 Hang T, Mukoyama D, Nara H, et al. Electrochemical impedance analysis of electrodeposited Si-O-C composite thick film on Cu microcones-arrayed current collector for lithium ion battery anode [J]. J. Power Sources, 2014, 256: 226
63 Hang T, Nara H, Yokoshima T, et al. Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries [J]. J. Power Sources, 2013, 222: 503
64 Tang Y Y, Xia X H, Yu Y X, et al. Cobalt nanomountain array supported silicon film anode for high-performance lithium ion batteries [J]. Electrochim. Acta, 2013, 88: 664
65 Qian X, Hang T, Nara H, et al. Electrodeposited three-dimensional porous Si-O-C/Ni thick film as high performance anode for lithium-ion batteries [J]. J. Power Sources, 2014, 272: 794
66 Wang N, Hang T, Ling H Q, et al. High-performance Si-based 3D Cu nanostructured electrode assembly for rechargeable lithium batteries [J]. J. Mater. Chem., 2015, 3A: 11912
67 Wang N, Hang T, Zhang W J, et al. Highly conductive Cu nanoneedle-array supported silicon film for high-performance lithium ion battery anodes [J]. J. Electrochem. Soc., 2016, 163: A380
68 Qian X, Xu Q, Hang T, et al. Electrochemical deposition of Fe3O4 nanoparticles and flower-like hierarchical porous nanoflakes on 3D Cu-cone arrays for rechargeable lithium battery anodes [J]. Mater. Des., 2017, 121: 321
69 Qian X, Hang T, Ran G, et al. Three-dimensional porous nickel supported Sn-O-C composite thin film as anode material for lithium-ion batteries [J]. RSC Adv., 2015, 5: 31275
70 Qian X, Hang T, Shanmugam S, et al. Decoration of micro-/nanoscale noble metal particles on 3D porous nickel using electrodeposition technique as electrocatalyst for hydrogen evolution reaction in alkaline electrolyte [J]. ACS Appl. Mater. Interfaces, 2015, 7: 15716
71 Jin J, Xia J B, Qian X, et al. Exceptional electrocatalytic oxygen evolution efficiency and stability from electrodeposited NiFe alloy on Ni foam [J]. Electrochim. Acta, 2019, 299: 567
72 Barati Darband G, Aliofkhazraei M, Rouhaghdam A S. Nickel nanocones as efficient and stable catalyst for electrochemical hydrogen evolution reaction [J]. Int. J. Hydrogen Energy, 2017, 42: 14560
73 Zhang X D, Li Y, Guo Y K, et al. 3D hierarchical nanostructured Ni-Co alloy electrodes on porous nickel for hydrogen evolution reaction [J]. Int. J. Hydrogen Energy, 2019, 44: 29946
74 Xu Q, Qian X, Qu Y Q, et al. Electrodeposition of Cu2O nanostructure on 3D Cu micro-cone arrays as photocathode for photoelectrochemical water reduction [J]. J. Electrochem. Soc., 2016, 163: H976
75 Wang N, Hang T, Chu D W, et al. Three-dimensional hierarchical nanostructured Cu/Ni-Co coating electrode for hydrogen evolution reaction in alkaline media [J]. Nano-Micro Lett., 2015, 7: 347
76 Wang T Y Y, Cai J Y, Wu Y W, et al. Applicable superamphiphobic Ni/Cu surface with high liquid repellency enabled by the electrochemical-deposited dual-scale structure [J]. ACS Appl. Mater. Interfaces, 2019, 11: 11106
77 Wu Y W, Wang S H, Ju S H, et al. Thermal oxidation fabricated copper oxide nanotip arrays with tunable wettability and robust stability: Implications for microfluidic devices and oil/water separation [J]. ACS Appl. Nano Mater., 2021, 4: 4713
78 Cai J Y, Wang S H, Zhang J H, et al. Chemical grafting of the superhydrophobic surface on copper with hierarchical microstructure and its formation mechanism [J]. Appl. Surf. Sci., 2018, 436: 950
79 Cai J Y, Wang T Y Y, Hao W, et al. Fabrication of superamphiphobic Cu surfaces using hierarchical surface morphology and fluorocarbon attachment facilitated by plasma activation [J]. Appl. Surf. Sci., 2019, 464: 140
80 Hang T, Hu A M, Ling H Q, et al. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition [J]. Appl. Surf. Sci., 2010, 256: 2400
81 Wang H B, Wang N, Hang T, et al. Morphologies and wetting properties of copper film with 3D porous micro-nano hierarchical structure prepared by electrochemical deposition [J]. Appl. Surf. Sci., 2016, 372: 7
82 Zhou Y F, Hang T, Li F, et al. Anti-wetting Cu/Cr coating with micro-posts array structure fabricated by electrochemical approaches [J]. Appl. Surf. Sci., 2013, 271: 369
83 Wu Y W, Hang T, Wang N, et al. Highly durable non-sticky silver film with a microball-nanosheet hierarchical structure prepared by chemical deposition [J]. Chem. Commun., 2013, 49: 10391
84 Wu Y W, Hang T, Yu Z Y, et al. Lotus leaf-like dual-scale silver film applied as a superhydrophobic and self-cleaning substrate [J]. Chem. Commun., 2014, 50: 8405
85 Mo X, Wu Y W, Zhang J H, et al. Bioinspired multifunctional Au nanostructures with switchable adhesion [J]. Langmuir, 2015, 31: 10850
86 Wang N, Yuan Y H, Wu Y W, et al. Wetting transition of the caterpillar-like superhydrophobic Cu/Ni-Co hierarchical structure by heat treatment [J]. Langmuir, 2015, 31: 10807
87 Zhang J N, Wang S H, Wu Y W, et al. Robust CuO micro-cone decorated membrane with superhydrophilicity applied for oil-water separation and anti-viscous-oil fouling [J]. Mater. Charact., 2021, 179: 111387
88 Wu Y W, Hang T, Komadina J, et al. High-adhesive superhydrophobic 3D nanostructured silver films applied as sensitive, long-lived, reproducible and recyclable SERS substrates [J]. Nanoscale, 2014, 6: 9720
89 Xia Y Y, Mo X, Ling H Q, et al. Facile fabrication of Au nanoparticles-decorated ni nanocone arrays as effective surface-enhanced Raman scattering substrates [J]. J. Electrochem. Soc., 2016, 163: D575
90 Hang T, Ling H Q, Xiu Z, et al. Study on the adhesion between epoxy molding compound and nanocone-arrayed Pd preplated leadframes [J]. J. Electron. Mater., 2007, 36: 1594
91 Chen Z, Luo T B, Hang T, et al. Low-temperature solid state bonding of Sn and nickel micro cones for micro interconnection [J]. ECS Solid State Lett., 2012, 1: P7
92 Lu Q, Chen Z, Zhang W J, et al. Low-temperature solid state bonding method based on surface Cu-Ni alloying microcones [J]. Appl. Surf. Sci., 2013, 268: 368
93 Geng W Y, Chen Z, Hu A M, et al. Interfacial morphologies and possible mechanisms of a novel low temperature insertion bonding technology based on micro-nano cones array [J]. Mater. Lett., 2012, 78: 72
94 Chen Z, Luo T B, Hang T, et al. Enhanced Ni3Sn4 nucleation and suppression of metastable NiSn3 in the solid state interfacial reactions between Sn and cone-structured Ni [J]. CrystEngComm, 2013, 15: 10490
95 Wang H Z, Ju L L, Guo Y K, et al. Interfacial morphology evolution of a novel room-temperature ultrasonic bonding method based on nanocone arrays [J]. Appl. Surf. Sci., 2015, 324: 849
96 Gao S X, Chen Z, Hu A M, et al. Electrodeposited Ni microcones with a thin Au film bonded with Au wire [J]. J. Mater. Process. Technol., 2014, 214: 326
97 Wang H Z, Leong W S, Hu F T, et al. Low-temperature copper bonding strategy with graphene interlayer [J]. ACS Nano, 2018, 12: 2395
98 Hang T, Ling H Q, Hu A M, et al. Growth mechanism and field emission properties of nickel nanocones array fabricated by one-step electrodeposition [J]. J. Electrochem. Soc., 2010, 157: D624
99 Su Z J, Yang C, Xie B H, et al. Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor [J]. Energy Environ. Sci., 2014, 7: 2652
100 Samuel E, Joshi B, Park C, et al. Supersonically sprayed rGO/ZIF8 on nickel nanocone substrate for highly stable supercapacitor electrodes [J]. Electrochim. Acta, 2020, 362: 137154
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[3] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[4] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[5] 曹姝婷, 张少华, 张健. GH4061合金在高压富氧环境下的燃烧行为[J]. 金属学报, 2023, 59(4): 547-555.
[6] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[7] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[8] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[9] 宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15.
[10] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[11] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[12] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[13] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[14] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[15] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.