|
|
无模板电沉积金属微纳米阵列材料研究进展 |
杭弢, 薛琦, 李明( ) |
上海交通大学 材料科学与工程学院 上海 200240 |
|
A Review on Metal Micro-Nanostructured Array Materials Routed by Template-Free Electrodeposition |
HANG Tao, XUE Qi, LI Ming( ) |
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
杭弢, 薛琦, 李明. 无模板电沉积金属微纳米阵列材料研究进展[J]. 金属学报, 2022, 58(4): 486-502.
Tao HANG,
Qi XUE,
Ming LI.
A Review on Metal Micro-Nanostructured Array Materials Routed by Template-Free Electrodeposition[J]. Acta Metall Sin, 2022, 58(4): 486-502.
1 |
Roduner E. Size matters: Why nanomaterials are different [J]. Chem. Soc. Rev., 2006, 35: 583
|
2 |
Lin J T, Liao C C, Hsu C S, et al. Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21 [J]. J. Am. Chem. Soc., 2019, 141: 10324
|
3 |
Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state [J]. J. Chem. Phys., 1984, 80: 4403
|
4 |
Xie Y D, Kocaefe D, Chen C Y, et al. Review of research on template methods in preparation of nanomaterials [J]. J. Nanomater., 2016, 2016: 2302595
|
5 |
Hatab N A A, Oran J M, Sepaniak M J. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing [J]. ACS Nano, 2008, 2: 377
|
6 |
Jain P K, Huang W Y, El-Sayed M A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation [J]. Nano Lett., 2007, 7: 2080
|
7 |
Li W Q, Wang G, Zhang X N, et al. Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection [J]. Nanoscale, 2015, 7: 15487
|
8 |
Huang Z L, Meng G W, Huang Q, et al. Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs [J]. J. Raman Spectrosc., 2013, 44: 240
|
9 |
Dai H J, Wong E W, Lu Y Z, et al. Synthesis and characterization of carbide nanorods [J]. Nature, 1995, 375: 769
|
10 |
Apel P. Track etching technique in membrane technology [J]. Radiat. Measur., 2001, 34: 559
|
11 |
Tang Y H, Wang N, Zhang Y F, et al. Synthesis and characterization of amorphous carbon nanowires [J]. Appl. Phys. Lett., 1999, 75: 2921
|
12 |
Wu Y Y, Yang P D. Germanium nanowire growth via simple vapor transport [J]. Chem. Mater., 2000, 31: 605
|
13 |
Duan X, Lieber C M. General synthesis of compound semiconductor nanowires [J]. Adv. Mater., 2010, 12: 298
|
14 |
Hang T, Li M, Fei Q, et al. Characterization of nickel nanocones routed by electrodeposition without any template [J]. Nanotechnology, 2008, 19: 035201
|
15 |
Hang T, Hu A M, Li M, et al. Structural control of a cobalt nanocone array grown by directional electrodeposition [J]. CrystEngComm, 2010, 12: 2799
|
16 |
Wang N, Hang T, Shanmugam S, et al. Preparation and characterization of nickel-cobalt alloy nanostructures array fabricated by electrodeposition [J]. CrystEngComm, 2014, 16: 6937
|
17 |
Deng Y P, Ling H Q, Feng X, et al. Electrodeposition and characterization of copper nanocone structures [J]. CrystEngComm, 2015, 17: 868
|
18 |
Wu H H. Principle of Electrodics [M]. Xiamen: Xiamen University Press, 1991: 35
|
18 |
吴辉煌. 电极学原理 [M]. 厦门: 厦门大学出版社, 1991: 35
|
19 |
Zhou S M. Metal Electrodeposition: Principle and Research Method [M]. Shanghai: Shanghai Science and Technology Press, 1987: 56
|
19 |
周绍民. 金属电沉积: 原理与研究方法 [M]. 上海: 上海科学技术出版社, 1987: 56
|
20 |
Hertz G. Modern electrochemistry [J]. Z. Phys. Chem., 1999, 212: 233
|
21 |
Hang T. Study on the nickel micro-nanocones array materials fabricated by electrodeposition [D]. Shanghai: Shanghai Jiao Tong University, 2010
|
21 |
杭 弢. 镍微纳米针锥阵列材料的电沉积制备与性能研究 [D]. 上海: 上海交通大学, 2010
|
22 |
Xu L X, Zhang S C, Liu W B, et al. Vertically cobalt nanoplate arrays based on one-step electrochemical growth and their magnetic properties [J]. J. Phys. Chem., 2012, 116C: 2801
|
23 |
Watanabe T, translated by Chen Z P, Yang G. Nano-Plating [M]. Beijing: Chemical Industry Press, 2007: 25
|
23 |
渡边辙著, 陈祝平, 杨 光 译. 纳米电镀 [M]. 北京: 化学工业出版社, 2007: 25
|
24 |
Lee J M, Jung K K, Lee S H, et al. One-step fabrication of nickel nanocones by electrodeposition using CaCl2·2H2O as capping reagent [J]. Appl. Surf. Sci., 2016, 369: 163
|
25 |
Damjanovic A, Paunovic M, Bockris J O M. The mechanism of step propagation and pyramid formation on the (100) plane of copper from in situ nomarski-optical studies [J]. J. Electroanal. Chem., 1965, 9: 93
|
26 |
Nageswar S. Electrodeposition of copper on a copper single crystal (111) face in the presence of bromide ions [J]. Electrodeposition Surf. Treat., 1975, 3: 369
|
27 |
Chen Z, Zhu C, Cai M L, et al. Growth and morphology tuning of ordered nickel nanocones routed by one-step pulse electrodeposition [J]. Appl. Surf. Sci., 2020, 508: 145291
|
28 |
Skibinska K, Kolczyk-Siedlecka K, Kutyla D, et al. Electrocatalytic properties of Co nanoconical structured electrodes produced by a one-step or two-step method [J]. Catalysts, 2021, 11: 544
|
29 |
Kim M J, Alvarez S, Chen Z H, et al. Single-crystal electrochemistry reveals why metal nanowires grow [J]. J. Am. Chem. Soc., 2018, 140: 14740
|
30 |
Rahimi E, Rafsanjani-Abbasi A, Imani A, et al. Synergistic effect of a crystal modifier and screw dislocation step defects on the formation mechanism of nickel micro-nanocone [J]. Mater. Lett., 2019, 245: 68
|
31 |
Xia Y Q, Wu Y W, Hang T, et al. Electrodeposition of high density silver nanosheets with controllable morphologies served as effective and reproducible SERS substrates [J]. Langmuir, 2016, 32: 3385
|
32 |
Wu Y W, Hang T, Yu Z Y, et al. Quasi-periodical 3D hierarchical silver nanosheets with sub-10 nm nanogap applied as an effective and applicable SERS substrate [J]. Adv. Mater. Interfaces, 2015, 2: 1500359
|
33 |
Bao Z L, Kavanagh K L. Aligned Co nanodiscs by electrodeposition on GaAs [J]. J. Cryst. Growth, 2006, 287: 514
|
34 |
Jia F L, Wong K W, Du R X. Direct growth of highly catalytic palladium nanoplates array onto gold substrate by a template-free electrochemical route [J]. Electrochem. Commun., 2009, 11: 519
|
35 |
Jia F L, Wong K W, Zhang L Z. Electrochemical synthesis of nanostructured palladium of different morphology directly on gold substrate through a cyclic deposition/dissolution route [J]. J. Phys. Chem., 2009, 113C: 7200
|
36 |
Li Y Y, Diao P, Jin T, et al. Shape-controlled electrodeposition of standing Rh nanoplates on indium tin oxide substrates and their electrocatalytic activity toward formic acid oxidation [J]. Electrochim. Acta, 2012, 83: 146
|
37 |
Liu G Q, Cai W P, Liang C H. Trapeziform Ag nanosheet arrays induced by electrochemical deposition on Au-coated substrate [J]. Cryst. Growth Des., 2008, 8: 2748
|
38 |
Liu G Q, Cai W P, Kong L C, et al. Vertically cross-linking silver nanoplate arrays with controllable density based on seed-assisted electrochemical growth and their structurally enhanced SERS activity [J]. J. Mater. Chem., 2010, 20: 767
|
39 |
Yang S K, Slotcavage D, Mai J D, et al. Electrochemically created highly surface roughened Ag nanoplate arrays for SERS biosensing applications [J]. J. Mater. Chem., 2014, 2C: 8350
|
40 |
Liu G Q, Duan G T, Jia L C, et al. Fabrication of self-standing silver nanoplate arrays by seed-decorated electrochemical route and their structure-induced properties [J]. J. Nanomater., 2013, 2013: 365947
|
41 |
Wu Q Y, Diao P, Sun J, et al. Electrodeposition of vertically aligned silver nanoplate arrays on indium Tin oxide substrates [J]. J. Phys. Chem., 2015, 119C: 20709
|
42 |
Lin C C, Juo T J, Chen Y J, et al. Enhanced cyclic voltammetry using 1-D gold nanorods synthesized via AAO template electrochemical deposition [J]. Desalination, 2008, 233: 113
|
43 |
Corduneanu O, Diculescu V C, Chiorcea-Paquim A M, et al. Shape-controlled palladium nanowires and nanoparticles electrodeposited on carbon electrodes [J]. J. Electroanal. Chem., 2008, 624: 97
|
44 |
Xiao Y K, Yu G, Yuan J, et al. Fabrication of Pd-Ni alloy nanowire arrays on HOPG surface by electrodeposition [J]. Electrochim. Acta, 2006, 51: 4218
|
45 |
Huang X P, Han W, Shi Z L, et al. Electrodeposition of periodically nanostructured straight cobalt filament arrays [J]. J. Phys. Chem., 2010, 113C: 1694
|
46 |
Zhang M Z, Zuo G H, Zong Z C, et al. Self-assembly of copper micro/nanoscale parallel wires by electrodeposition on a silicon substrate [J]. Small, 2006, 2: 727
|
47 |
Tian N, Zhou Z Y, Sun S G. Electrochemical preparation of Pd nanorods with high-index facets [J]. Chem. Commun., 2009, (12): 1502
|
48 |
Zhang H M, Zhou W Q, Du Y K, et al. One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation [J]. Electrochem. Commun., 2010, 12: 882
|
49 |
Li Y X, Xian H Y, Zhou Y. Formation of platinum nanoflowers on 3-aminopropyltriethoxysilane monolayer: Growth mechanism and electrocatalysis [J]. Appl. Catal., 2011, 401A: 226
|
50 |
Nguyen T L, Cao V H, Yen Pham T H, et al. Fabrication of nano flower-shaped platinum on glassy carbon electrode as a sensitive sensor for lead electrochemical analysis [J]. Electroanalysis, 2019, 31: 2538
|
51 |
Wang L, Guo S J, Hu X G, et al. Facile electrochemical approach to fabricate hierarchical flowerlike gold microstructures: Electrodeposited superhydrophobic surface [J]. Electrochem. Commun., 2008, 10: 95
|
52 |
Tang S C, Meng X K, Wang C C, et al. Flowerlike Ag microparticles with novel nanostructure synthesized by an electrochemical approach [J]. Mater. Chem. Phys., 2009, 114: 842
|
53 |
Bian J C, Li Z, Chen Z D, et al. Double-potentiostatic electrodeposition of Ag nanoflowers on ITO glass for reproducible surface-enhanced (resonance) Raman scattering application [J]. Electrochim. Acta, 2012, 67: 12
|
54 |
Liu X Y, Sun P, Ren S, et al. Electrodeposition of high-pressure-stable bcc phase bismuth flowerlike micro/nanocomposite architectures at room temperature without surfactant [J]. Electrochem. Commun., 2008, 10: 136
|
55 |
Yang J M, Hsieh Y T, Chu-Tien T T, et al. Electrodeposition of distinct one-dimensional Zn biaxial microbelt from the zinc chloride-1-Ethyl-3-methylidazolium Chloride Ionic Liquid [J]. J. Electrochem. Soc., 2011, 158: D235
|
56 |
Yang J M, Gou S P, Sun I W. Single-step large-scale and template-free electrochemical growth of Ni-Zn alloy filament arrays from a zinc chloride based ionic liquid [J]. Chem. Commun., 2010, 46: 2686
|
57 |
Xu D, Yan X H, Diao P, et al. Electrodeposition of vertically aligned palladium nanoneedles and their application as active substrates for surface-enhanced raman scattering [J]. J. Phys. Chem., 2014, 118C: 9758
|
58 |
Wang H Z, Hu A M, Li M. Synthesis of hierarchical mushroom-like cobalt nanostructures based on one-step galvanostatic electrochemical deposition [J]. CrystEngComm, 2014, 16: 8015
|
59 |
Liu X J, Long L, Yang W X, et al. Facilely electrodeposited coral-like copper micro-/nano-structure arrays with excellent performance in glucose sensing [J]. Sens. Actuat., 2018, 266B: 853
|
60 |
Xia Y Y, Wu Y W, Wu L W, et al. Two-step electrodeposited 3D Ni nanocone supported au nanoball arrays as SERS substrate [J]. J. Electrochem. Soc., 2020, 167: 142502
|
61 |
Zhang S D, Du Z J, Lin R X, et al. Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries [J]. Adv. Mater., 2010, 22: 5378
|
62 |
Hang T, Mukoyama D, Nara H, et al. Electrochemical impedance analysis of electrodeposited Si-O-C composite thick film on Cu microcones-arrayed current collector for lithium ion battery anode [J]. J. Power Sources, 2014, 256: 226
|
63 |
Hang T, Nara H, Yokoshima T, et al. Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries [J]. J. Power Sources, 2013, 222: 503
|
64 |
Tang Y Y, Xia X H, Yu Y X, et al. Cobalt nanomountain array supported silicon film anode for high-performance lithium ion batteries [J]. Electrochim. Acta, 2013, 88: 664
|
65 |
Qian X, Hang T, Nara H, et al. Electrodeposited three-dimensional porous Si-O-C/Ni thick film as high performance anode for lithium-ion batteries [J]. J. Power Sources, 2014, 272: 794
|
66 |
Wang N, Hang T, Ling H Q, et al. High-performance Si-based 3D Cu nanostructured electrode assembly for rechargeable lithium batteries [J]. J. Mater. Chem., 2015, 3A: 11912
|
67 |
Wang N, Hang T, Zhang W J, et al. Highly conductive Cu nanoneedle-array supported silicon film for high-performance lithium ion battery anodes [J]. J. Electrochem. Soc., 2016, 163: A380
|
68 |
Qian X, Xu Q, Hang T, et al. Electrochemical deposition of Fe3O4 nanoparticles and flower-like hierarchical porous nanoflakes on 3D Cu-cone arrays for rechargeable lithium battery anodes [J]. Mater. Des., 2017, 121: 321
|
69 |
Qian X, Hang T, Ran G, et al. Three-dimensional porous nickel supported Sn-O-C composite thin film as anode material for lithium-ion batteries [J]. RSC Adv., 2015, 5: 31275
|
70 |
Qian X, Hang T, Shanmugam S, et al. Decoration of micro-/nanoscale noble metal particles on 3D porous nickel using electrodeposition technique as electrocatalyst for hydrogen evolution reaction in alkaline electrolyte [J]. ACS Appl. Mater. Interfaces, 2015, 7: 15716
|
71 |
Jin J, Xia J B, Qian X, et al. Exceptional electrocatalytic oxygen evolution efficiency and stability from electrodeposited NiFe alloy on Ni foam [J]. Electrochim. Acta, 2019, 299: 567
|
72 |
Barati Darband G, Aliofkhazraei M, Rouhaghdam A S. Nickel nanocones as efficient and stable catalyst for electrochemical hydrogen evolution reaction [J]. Int. J. Hydrogen Energy, 2017, 42: 14560
|
73 |
Zhang X D, Li Y, Guo Y K, et al. 3D hierarchical nanostructured Ni-Co alloy electrodes on porous nickel for hydrogen evolution reaction [J]. Int. J. Hydrogen Energy, 2019, 44: 29946
|
74 |
Xu Q, Qian X, Qu Y Q, et al. Electrodeposition of Cu2O nanostructure on 3D Cu micro-cone arrays as photocathode for photoelectrochemical water reduction [J]. J. Electrochem. Soc., 2016, 163: H976
|
75 |
Wang N, Hang T, Chu D W, et al. Three-dimensional hierarchical nanostructured Cu/Ni-Co coating electrode for hydrogen evolution reaction in alkaline media [J]. Nano-Micro Lett., 2015, 7: 347
|
76 |
Wang T Y Y, Cai J Y, Wu Y W, et al. Applicable superamphiphobic Ni/Cu surface with high liquid repellency enabled by the electrochemical-deposited dual-scale structure [J]. ACS Appl. Mater. Interfaces, 2019, 11: 11106
|
77 |
Wu Y W, Wang S H, Ju S H, et al. Thermal oxidation fabricated copper oxide nanotip arrays with tunable wettability and robust stability: Implications for microfluidic devices and oil/water separation [J]. ACS Appl. Nano Mater., 2021, 4: 4713
|
78 |
Cai J Y, Wang S H, Zhang J H, et al. Chemical grafting of the superhydrophobic surface on copper with hierarchical microstructure and its formation mechanism [J]. Appl. Surf. Sci., 2018, 436: 950
|
79 |
Cai J Y, Wang T Y Y, Hao W, et al. Fabrication of superamphiphobic Cu surfaces using hierarchical surface morphology and fluorocarbon attachment facilitated by plasma activation [J]. Appl. Surf. Sci., 2019, 464: 140
|
80 |
Hang T, Hu A M, Ling H Q, et al. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition [J]. Appl. Surf. Sci., 2010, 256: 2400
|
81 |
Wang H B, Wang N, Hang T, et al. Morphologies and wetting properties of copper film with 3D porous micro-nano hierarchical structure prepared by electrochemical deposition [J]. Appl. Surf. Sci., 2016, 372: 7
|
82 |
Zhou Y F, Hang T, Li F, et al. Anti-wetting Cu/Cr coating with micro-posts array structure fabricated by electrochemical approaches [J]. Appl. Surf. Sci., 2013, 271: 369
|
83 |
Wu Y W, Hang T, Wang N, et al. Highly durable non-sticky silver film with a microball-nanosheet hierarchical structure prepared by chemical deposition [J]. Chem. Commun., 2013, 49: 10391
|
84 |
Wu Y W, Hang T, Yu Z Y, et al. Lotus leaf-like dual-scale silver film applied as a superhydrophobic and self-cleaning substrate [J]. Chem. Commun., 2014, 50: 8405
|
85 |
Mo X, Wu Y W, Zhang J H, et al. Bioinspired multifunctional Au nanostructures with switchable adhesion [J]. Langmuir, 2015, 31: 10850
|
86 |
Wang N, Yuan Y H, Wu Y W, et al. Wetting transition of the caterpillar-like superhydrophobic Cu/Ni-Co hierarchical structure by heat treatment [J]. Langmuir, 2015, 31: 10807
|
87 |
Zhang J N, Wang S H, Wu Y W, et al. Robust CuO micro-cone decorated membrane with superhydrophilicity applied for oil-water separation and anti-viscous-oil fouling [J]. Mater. Charact., 2021, 179: 111387
|
88 |
Wu Y W, Hang T, Komadina J, et al. High-adhesive superhydrophobic 3D nanostructured silver films applied as sensitive, long-lived, reproducible and recyclable SERS substrates [J]. Nanoscale, 2014, 6: 9720
|
89 |
Xia Y Y, Mo X, Ling H Q, et al. Facile fabrication of Au nanoparticles-decorated ni nanocone arrays as effective surface-enhanced Raman scattering substrates [J]. J. Electrochem. Soc., 2016, 163: D575
|
90 |
Hang T, Ling H Q, Xiu Z, et al. Study on the adhesion between epoxy molding compound and nanocone-arrayed Pd preplated leadframes [J]. J. Electron. Mater., 2007, 36: 1594
|
91 |
Chen Z, Luo T B, Hang T, et al. Low-temperature solid state bonding of Sn and nickel micro cones for micro interconnection [J]. ECS Solid State Lett., 2012, 1: P7
|
92 |
Lu Q, Chen Z, Zhang W J, et al. Low-temperature solid state bonding method based on surface Cu-Ni alloying microcones [J]. Appl. Surf. Sci., 2013, 268: 368
|
93 |
Geng W Y, Chen Z, Hu A M, et al. Interfacial morphologies and possible mechanisms of a novel low temperature insertion bonding technology based on micro-nano cones array [J]. Mater. Lett., 2012, 78: 72
|
94 |
Chen Z, Luo T B, Hang T, et al. Enhanced Ni3Sn4 nucleation and suppression of metastable NiSn3 in the solid state interfacial reactions between Sn and cone-structured Ni [J]. CrystEngComm, 2013, 15: 10490
|
95 |
Wang H Z, Ju L L, Guo Y K, et al. Interfacial morphology evolution of a novel room-temperature ultrasonic bonding method based on nanocone arrays [J]. Appl. Surf. Sci., 2015, 324: 849
|
96 |
Gao S X, Chen Z, Hu A M, et al. Electrodeposited Ni microcones with a thin Au film bonded with Au wire [J]. J. Mater. Process. Technol., 2014, 214: 326
|
97 |
Wang H Z, Leong W S, Hu F T, et al. Low-temperature copper bonding strategy with graphene interlayer [J]. ACS Nano, 2018, 12: 2395
|
98 |
Hang T, Ling H Q, Hu A M, et al. Growth mechanism and field emission properties of nickel nanocones array fabricated by one-step electrodeposition [J]. J. Electrochem. Soc., 2010, 157: D624
|
99 |
Su Z J, Yang C, Xie B H, et al. Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor [J]. Energy Environ. Sci., 2014, 7: 2652
|
100 |
Samuel E, Joshi B, Park C, et al. Supersonically sprayed rGO/ZIF8 on nickel nanocone substrate for highly stable supercapacitor electrodes [J]. Electrochim. Acta, 2020, 362: 137154
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|