Please wait a minute...
金属学报  2019, Vol. 55 Issue (10): 1273-1281    DOI: 10.11900/0412.1961.2019.00032
  本期目录 | 过刊浏览 |
预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响
高博1,2,王磊1,2(),宋秀1,2,刘杨1,2,杨舒宇3,千叶晶彦4
1. 东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
2. 东北大学材料科学与工程学院 沈阳 110819
3. 沈阳大学机械工程学院 沈阳 110044
4. Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Effect of Pre-Oxidation on High Temperature Oxidation and Corrosion Behavior of Co-Al-W-Based Superalloy
GAO Bo1,2,WANG Lei1,2(),SONG Xiu1,2,LIU Yang1,2,YANG Shuyu3,CHIBA Akihiko4
1. Key Lab for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3. College of Mechanical Engineering, Shenyang University, Shenyang 110044, China
4. Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
引用本文:

高博, 王磊, 宋秀, 刘杨, 杨舒宇, 千叶晶彦. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响[J]. 金属学报, 2019, 55(10): 1273-1281.
Bo GAO, Lei WANG, Xiu SONG, Yang LIU, Shuyu YANG, Akihiko CHIBA. Effect of Pre-Oxidation on High Temperature Oxidation and Corrosion Behavior of Co-Al-W-Based Superalloy[J]. Acta Metall Sin, 2019, 55(10): 1273-1281.

全文: PDF(45668 KB)   HTML
摘要: 

将900 ℃常氧分压(900-PreO)、950 ℃常氧分压(950-PreO)和1000 ℃低氧分压(1000-LPreO)预氧化应用于Co-Al-W基高温合金,研究其高温氧化和热腐蚀行为,利用XRD、SEM和EDS表征了合金氧化层的结构和形貌特征。结果表明,采用900-PreO、950-PreO和1000-LpreO均可获得结构致密的预氧化层。1000 ℃氧化时,900-PreO预氧化层中的Cr2O3层进一步氧化而减薄,削弱了其对O及金属元素扩散的阻碍,致使氧化增重与未预氧化合金的情况相近;1000-LPreO预氧化生成的TiTaO4层易开裂,导致氧化层脱落严重,抗氧化性能较差;而950-PreO预氧化生成的CoCr2O4和Al2O3层致密且连续,氧化层的保护性强,氧化增重减缓。Co-Al-W基高温合金的热腐蚀中,950-PreO预氧化层中的CoWO4和Al2O3层阻止腐蚀介质进入合金基体,腐蚀增重锐减超过了80%。

关键词 Co-Al-W基高温合金预氧化高温氧化热腐蚀氧化层    
Abstract

In 2006, stable γ' phase was found in Co-Al-W alloy, which provides a new way for developing Co-based superalloys. In order to meet the requirements for applications, the Co-Al-W-based superalloys need to have good oxidation and corrosion resistance. But the oxidation and corrosion resistance of the Co-Al-W-based superalloys is relatively low. In this work, pre-oxidation treatments were used to improve the oxidation and corrosion resistance. Three types of pre-oxidation treatments were carried out at 900 ℃ (in air), 950 ℃ (in air) and 1000 ℃ (in 1%O2+99%Ar), which were marked as 900-PreO, 950-PreO and 1000-LPreO, respectively. High temperature oxidation tests of both the pre-oxidation treated and untreated superalloys were carried out at 1000 ℃. And hot corrosion behaviors were also investigated at both 800 and 850 ℃. XRD, SEM and EDS were used to examine the characteristics of the oxidation and corrosion behaviors. The results show that the pre-oxide layers of the superalloys after different pre-oxidation treatments are compact. During oxidation at 1000 ℃, the Cr2O3 scale in 900-PreO treated superalloy is oxidized to form volatile products, and the diffusion resistance of both oxygen and the metal elements through the oxide layer is poor. In 1000-LPreO treated superalloy, serious spallation of the oxides occurs and leads to poor oxidation resistance. In 950-PreO treated superalloy, since the continuous CoCr2O4 and Al2O3 scales help to reduce the diffusion of oxygen and the metal elements, the mass gain of 950-PreO treated superalloy is consequently decreased. During the hot corrosion process, the pre-oxide layer of 950-PreO treated superalloy can hinder the diffusion of corrosive medium. Therefore, the corrosion resistance can be significantly improved by 950-PreO treatment, and the mass gain is decreased by over 80%.

Key wordsCo-Al-W-based superalloy    pre-oxidation    high temperature oxidation    hot corrosion    oxide layer
收稿日期: 2019-01-31     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金重点项目(U1708253);国家科技重大专项项目(基础研究)(2017-VI-0002)
作者简介: 高 博,男,1991年生,博士生
TreatmentTemperature / ℃Oxidation atmosphereTime / h
900-PreO900Air72
950-PreO950Air72
1000-LPreO10001%O2+99%Ar72
表1  Co-Al-W基高温合金的预氧化制度
图1  不同制度预氧化Co-Al-W基高温合金氧化产物的XRD谱
图2  不同制度预氧化Co-Al-W基高温合金的氧化层背散射电子(BSE)像
图3  未预氧化和不同制度预氧化Co-Al-W基高温合金1000 ℃的氧化动力学曲线
图4  未预氧化和不同制度预氧化Co-Al-W基高温合金经1000 ℃氧化198 h后的氧化层BSE像
图5  NPreO和950-PreO预氧化Co-Al-W基高温合金的腐蚀动力学曲线

Treatment

800 ℃850 ℃
0~11 h11~99 h0~11 h11~99 h
NPreO5.50±0.910.52±0.046.94±0.770.75±0.08
950-PreO0.68±0.170.12±0.040.76±0.170.14±0.07
表2  NPreO和950-PreO预氧化Co-Al-W基高温合金的平均腐蚀增重速率
图6  NPreO和950-PreO预氧化Co-Al-W基高温合金腐蚀99 h的腐蚀层BSE像
图7  900-PreO和950-PreO预氧化Co-Al-W基高温合金氧化2 h的氧化层BSE像
TreatmentPrimary stage1000 ℃ oxidation for 198 h
NPreO01.78±0.34
900-PreO0.38±0.191.70±0.36
950-PreO0.89±0.261.88±0.28
1000-LPreO1.80±0.41-
表3  Co-Al-W基高温合金的Al2O3层厚度
Oxide scalePrimary stage800 ℃850 ℃
CoWO40.88±0.480.93±0.290.98±0.24
Al2O30.89±0.221.16±0.401.01±0.39
表4  950-PreO预氧化Co-Al-W基高温合金在800和850 ℃腐蚀99 h后CoWO4和Al2O3层厚度
[1] Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 1
[2] Sato J, Omori T, Oikawa K ,et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
[3] Saal J E, Wolverton C. Thermodynamic stability of Co-Al-W L12γ' [J]. Acta Mater., 2013, 61: 2330
[4] Guo J T. Materials Science and Engineering for Superalloys (Book 3) [M]. Beijing: Science Press, 2010: 123
[4] (郭建亭. 高温合金材料学(下册) [M]. 北京: 科学出版社, 2010: 123)
[5] Shinagawa K, Omori T, Sato J ,et al. Phase equilibria and microstructure on γ' phase in Co-Ni-Al-W system [J]. Mater. Trans., 2008, 49: 1474
[6] Xue F, Zhou H J, Ding X F, et al. Improved high temperature γ' stability of Co-Al-W-base alloys containing Ti and Ta [J]. Mater. Lett., 2013, 112: 215
[7] Bauer A, Neumeier S, Pyczak F, et al. Microstructure and creep strength of different γ/γ'-strengthened Co-base superalloy variants [J]. Scr. Mater., 2010, 63: 1197
[8] Yan H Y, Vorontsov V A, Dye D. Alloying effects in polycrystalline γ' strengthened Co-Al-W base alloys [J]. Intermetallics, 2014, 48: 44
[9] Omori T, Oikawa K, Sato J, et al. Partition behavior of alloying elements and phase transformation temperatures in Co-Al-W-base quaternary systems [J]. Intermetallics, 2013, 32: 274
[10] Birks N, Meier G H, Pettit F S. Introduction to the High-Temperature Oxidation of Metals [M]. 2nd Ed., Cambridge: Cambridge University Press, 2006: 1
[11] Li M S. High Temperature Hot Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 239
[11] (李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 239)
[12] Zhang Y. Cyclic oxidation behavior of two novel Co-base superalloys [D]. Shenyang: Northeastern University, 2018
[12] (张 莹. 两种新型钴基高温合金的循环氧化行为 [D]. 沈阳: 东北大学, 2018)
[13] Gao B, Wang L, Liu Y, et al. Corrosion behavior of new type Co-based superalloys with different Ni contents [J]. Corros. Rev., 2017, 35: 455
[14] Xu Y T, Xia T D, Yan J Q. Effect of alloying element tungsten on hot corrosion behavior of novel Co-Al-W superalloys [J]. Chin. J. Nonferrous Met., 2011, 21: 110
[14] (徐仰涛, 夏天东, 闫健强. 合金元素钨对新型Co-Al-W合金热腐蚀行为的影响 [J]. 中国有色金属学报, 2011, 21: 110)
[15] Xu Y T, Xia T D, Yan J Q. Effect of alloying elements to hot corrosion behavior of novel Co-Al-W superalloy [J]. J.Chin. Soc. orros. Prot., 2010, 30: 457
[15] (徐仰涛, 夏天东, 闫健强. 合金元素对新型Co-Al-W合金热腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 457)
[16] Klein L, Shen Y, Killian M S ,et al. Effect of B and Cr on the high temperature oxidation behaviour of novel γ/γ′-strengthened Co-base superalloys [J]. Corros. Sci., 2011, 53: 2713
[17] Guo J T. Materials Science and Engineering for Superalloys (Book 1) [M]. Beijing: Science Press, 2008: 664
[17] (郭建亭. 高温合金材料学(上册) [M]. 北京: 科学出版社, 2008: 664)
[18] Huang L, Sun X F, Guan H R ,et al. Dgradation behavior of aluminide coatings on directionally solidified nickel base superalloy M951 [J]. Corros. Sci. Prot. Technol., 2005, 17: 34
[18] (黄 粮, 孙晓峰, 管恒荣等. 定向凝固高温合金M951低压渗铝涂层的高温氧化及相变过程 [J]. 腐蚀科学与防护技术, 2005, 17: 34)
[19] Talic B, Molin S, Hendriksen P V, et al. Effect of pre-oxidation on the oxidation resistance of Crofer 22 APU [J]. Corros. Sci., 2018, 138: 189
[20] Ou D R, Cheng M J. Effect of pre-oxidation on the oxidation resistance of spinel-coated Fe-Cr ferritic alloy for solid oxide fuel cell applications [J]. J. Power Sources., 2014, 247: 84
[21] Li Z M, Qian S Q, Wang W, et al. Effect of preoxidation temperature on high temperature cyclic oxidation resistance of GH3128 superalloy [J]. Rare Met. Mater. Eng., 2012, 41: 1980
[21] (李志明, 钱士强, 王 伟等. 预氧化温度对GH3128合金抗高温循环氧化性能的影响 [J]. 稀有金属材料与工程, 2012, 41: 1980)
[22] Young D J. High Temperature Oxidation and Corrosion of Metals [M]. Amsterdam: Elsevier, 2008: 193
[23] Zheng L, Zhang M C, Dong J X. Oxidation behavior and mechanism of powder metallurgy Rene95 nickel based superalloy between 800 and 1000 ℃ [J]. Appl. Surf. Sci., 2010, 256: 7510
[24] Sun D J, Liang C Y, Shang J L ,et al. Effect of Y2O3 contents on oxidation resistance at 1150 ℃ and mechanical properties at room temperature of ODS Ni-20Cr-5Al alloy [J]. Appl. Surf. Sci., 2016, 385: 587
[25] Li T F. High Temperature Oxidation and Hot Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003: 30
[25] (李铁蕃. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 30)
[26] Li X, Peng X Y, Duan Y L ,et al. Thermal oxidation behavior of commercial purity titanium at high temperature [J]. Chin. J. Nonferrous Met., 2013, 23: 2190
[26] (李 旭, 彭小燕, 段雨露等. 工业纯钛的高温热氧化行为 [J]. 中国有色金属学报. 2013, 23: 2190)
[1] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[2] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[3] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[4] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[5] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[6] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[7] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[8] 刘冠熙, 黄光宏, 罗学昆, 申造宇, 何利民, 李建平, 牟仁德. 表面喷丸处理对NiCrAlYSi涂层恒温氧化行为的影响[J]. 金属学报, 2021, 57(5): 684-692.
[9] 杨亮, 吕皓天, 万春磊, 巩前明, 陈浩, 张弛, 杨志刚. 综述:活性元素作用机理——氧化物“钉扎”模型[J]. 金属学报, 2021, 57(2): 182-190.
[10] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[11] 廖依敏, 丰敏, 陈明辉, 耿哲, 刘阳, 王福会, 朱圣龙. TiAl合金表面搪瓷基复合涂层与多弧离子镀NiCrAlY涂层的抗热腐蚀行为对比研究[J]. 金属学报, 2019, 55(2): 229-237.
[12] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[13] 白银, 刘正东, 谢建新, 包汉生, 陈正宗. 预氧化处理对G115钢高温蒸气氧化行为的影响[J]. 金属学报, 2018, 54(6): 895-904.
[14] 蒋成洋, 阳颖飞, 张正义, 鲍泽斌, 朱圣龙, 王福会. 一种Zr改性双相PtAl2+(Ni, Pt)Al涂层的制备及热腐蚀行为研究[J]. 金属学报, 2018, 54(4): 581-590.
[15] 张凯, 陈银莉, 孙彦辉, 徐志军. 加热过程中H2O(g)对55SiCr弹簧钢脱碳的影响[J]. 金属学报, 2018, 54(10): 1350-1358.