|
|
铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响 |
冯浩1,李花兵1( ),路鹏冲1,杨纯田2,姜周华1,武晓雷3 |
1. 东北大学冶金学院 沈阳 110819 2. 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819 3. 中国科学院力学研究所非线性力学国家重点实验室 北京 100190 |
|
Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa |
FENG Hao1,LI Huabing1( ),LU Pengchong1,YANG Chuntian2,JIANG Zhouhua1,WU Xiaolei3 |
1. School of Metallurgy, Northeastern University, Shenyang 110819, China 2. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China 3. State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China |
引用本文:
冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
Hao FENG,
Huabing LI,
Pengchong LU,
Chuntian YANG,
Zhouhua JIANG,
Xiaolei WU.
Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa[J]. Acta Metall Sin, 2019, 55(11): 1457-1468.
[1] | ZhangY, ZuoT T, TangZ, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1 | [2] | GaoM C, QiaoJ W. High-entropy alloys (HEAs) [J]. Metals, 2018, 8: 108 | [3] | JiangH, JiangL, QiaoD X, et al. Effect of niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys [J]. J. Mater. Sci. Technol., 2017, 33: 712 | [4] | ZhangC, ZhangF, DiaoH Y, et al. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys [J]. Mater. Des., 2016, 109: 425 | [5] | FengH, LiH B, WuX L, et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy [J]. J. Mater. Sci. Technol., 2018, 34: 1781 | [6] | MiaoJ W, GuoT M, RenJ F, et al. Optimization of mechanical and tribological properties of FCC CrCoNi multi-principal element alloy with Mo addition [J]. Vacuum, 2018, 149: 324 | [7] | GludovatzB, HohenwarterA, ThurstonK V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602 | [8] | Dan SathiarajG, SkrotzkiW, PukenasA, et al. Effect of annealing on the microstructure and texture of cold rolled CrCoNi medium-entropy alloy [J]. Intermetallics, 2018, 101: 87 | [9] | SloneC E, ChakrabortyS, MiaoJ, et al. Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy [J]. Acta Mater., 2018, 158: 38 | [10] | MaY, YuanF P, YangM X, et al. Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures [J]. Acta Mater., 2018, 148: 407 | [11] | LiuX W, LaplancheG, KostkaA, et al. Columnar to equiaxed transition and grain refinement of cast CrCoNi medium-entropy alloy by microalloying with titanium and carbon [J]. J. Alloys Compd., 2019, 775: 1068 | [12] | XuD K, LiY C, SongF M, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis [J]. Corros. Sci., 2013, 77: 385 | [13] | ZhangP Y, XuD K, LiY C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14 | [14] | GuC X, XiaR, ZhuG J, et al. Study on corrosion of marine microbial of stainless steel [J]. Ship Eng., 2017, 39(10): 57 | [14] | 顾彩香, 夏 瑞, 朱冠军等. 不锈钢海洋微生物腐蚀研究 [J]. 船舶工程, 2017, 39(10): 57 | [15] | Wikie?A J, DatsenkoI, VeraM, et al. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment [J]. Bioelectrochemistry, 2014, 97: 52 | [16] | XuD K, LiY C, GuT Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52 | [17] | ShiX B, XuD K, YanM C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153 | [17] | 史显波, 徐大可, 闫茂成等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153 | [18] | WangM F, LiuH F, XuL M. Applied research on the competitive growth of bacteria in biological control of MIC [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 159 | [18] | 汪梅芳, 刘宏芳, 许立铭. 细菌竞争生长在微生物腐蚀防治中的应用研究 [J]. 中国腐蚀与防护学报, 2004, 24: 159 | [19] | DongZ H, GuoX P, LiuH F, et al. Study on electrochemistry characteristics in MIC by wire beam electrodes [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 48 | [19] | 董泽华, 郭兴蓬, 刘宏芳等. 用丝束电极研究SRB微生物诱导腐蚀的电化学特征 [J]. 中国腐蚀与防护学报, 2002, 22: 48 | [20] | XiaJ, YangC G, XuD K, et al. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm [J]. Biofouling, 2015, 31: 481 | [21] | LiH B, ZhouE Z, RenY B, et al. Investigation of microbiologically influenced corrosion of high nitrogen nickel-free stainless steel by Pseudomonas aeruginosa [J]. Corros. Sci., 2016, 111: 811 | [22] | LiH B, YangC T, ZhouE Z, et al. Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm [J]. J. Mater. Sci. Technol., 2017, 33: 1596 | [23] | ZhouE Z, LiH B, YangC T, et al. Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm [J]. Int. Biodeterior. Biodegrad., 2018, 127: 1 | [24] | ZhaoY, ZhouE Z, XuD K, et al. Laboratory investigation of microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm using electrochemical noise [J]. Corros. Sci., 2018, 143: 281 | [25] | ShibataT. 1996 W.R.Whitney award lecture: Statistical and stochastic approaches to localized corrosion [J]. Corrosion, 1996, 52: 813 | [26] | MengG Z, WeiL Y, ZhangT, et al. Effect of microcrystallization on pitting corrosion of pure aluminium [J]. Corros. Sci., 2009, 51: 2151 | [27] | GholamiM, HoseinpoorM, MoayedM H. A statistical study on the effect of annealing temperature on pitting corrosion resistance of 2205 duplex stainless steel [J]. Corros. Sci., 2015, 94: 156 | [28] | ZhangT, ChenC M, ShaoY W, et al. Corrosion of pure magnesium under thin electrolyte layers [J]. Electrochim. Acta, 2008, 53: 7921 | [29] | ZhangT, LiuX L, ShaoY W, et al. Electrochemical noise analysis on the pit corrosion susceptibility of Mg-10Gd-2Y-0.5Zr, AZ91D alloy and pure magnesium using stochastic model [J]. Corros. Sci., 2008, 50: 3500 | [30] | MoradiM, SongZ L, YangL J, et al. Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behaviour of 2205 duplex stainless steel [J]. Corros. Sci., 2014, 84: 103 | [31] | VasylievG S. The influence of flow rate on corrosion of mild steel in hot tap water [J]. Corros. Sci., 2015, 98: 33 | [32] | AljohaniT A, HaydenB E. A simultaneous screening of the corrosion resistance of Ni-W thin film alloys [J]. Electrochim. Acta, 2013, 111: 930 | [33] | ZouY, WangJ, ZhengY Y. Electrochemical techniques for determining corrosion rate of rusted steel in seawater [J]. Corros. Sci., 2011, 53: 208 | [34] | MuX, WeiJ, DongJ H, et al. In situ corrosion monitoring of mild steel in a simulated tidal zone without marine fouling attachment by electrochemical impedance spectroscopy [J]. J. Mater. Sci. Technol., 2014, 30: 1043 | [35] | YuL B, YanM C, MaJ, et al. Sulfate reducing bacteria corrosion of pipeline steel in Fe-rich red soil [J]. Acta Metall. Sin., 2017, 53: 1568 | [35] | 于利宝, 闫茂成, 马 健等. 富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为 [J]. 金属学报, 2017, 53: 1568 | [36] | YuanS J, ChoongA M F, PehkonenS O. The influence of the marine aerobic Pseudomonas strain on the corrosion of 70/30 Cu-Ni alloy [J]. Corros. Sci., 2007, 49: 4352 | [37] | LiY C, XuD K, ChenC F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. J. Mater. Sci. Technol., 2018, 34: 1713 | [38] | HuangY, ZhouE Z, JiangC Y, et al. Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa [J]. Electrochem. Commun., 2018, 94: 9 | [39] | VenzlaffH, EnningD, SrinivasanJ, et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria [J]. Corros. Sci., 2013, 66: 88 | [40] | XuD K, GuT Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibriovulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74 | [41] | ParkJ J, PyunS I. Stochastic approach to the pit growth kinetics of Inconel alloy 600 in Cl- ion-containing thiosulphate solution at temperatures 25—150 ℃ by analysis of the potentiostatic current transients [J]. Corros. Sci., 2004, 46: 285 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|