|
|
溅射沉积Mg2(Sn, Si)薄膜组织结构与导电性能 |
宋贵宏1( ),李贵鹏1,刘倩男1,杜昊2( ),胡方1 |
1. 沈阳工业大学材料科学与工程学院 沈阳 110870 2. 中国科学院金属研究所 沈阳110016 |
|
Microstructure and Electric Conductance of Mg2(Sn, Si) Thin Films by Sputtering |
SONG Guihong1( ),LI Guipeng1,LIU Qiannan1,DU Hao2( ),HU Fang1 |
1. School of Materials Science and Technology, Shenyang University of Technology, Shenyang 110870, China 2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
宋贵宏,李贵鹏,刘倩男,杜昊,胡方. 溅射沉积Mg2(Sn, Si)薄膜组织结构与导电性能[J]. 金属学报, 2019, 55(11): 1469-1476.
Guihong SONG,
Guipeng LI,
Qiannan LIU,
Hao DU,
Fang HU.
Microstructure and Electric Conductance of Mg2(Sn, Si) Thin Films by Sputtering[J]. Acta Metall Sin, 2019, 55(11): 1469-1476.
[1] | ZhangX, LiuH L, LuQ M, et al. Enhanced thermoelectric performance of Mg2Si0.4Sn0.6 solid solutions by in nanostructures and minute Bi-doping [J]. Appl. Phys. Lett., 2013, 103: 063901 | [2] | Pshenai-SeverinD A, FedorovM I, SamuninA Y. The influence of grain boundary scattering on thermoelectric properties of Mg2Si and Mg2Si0.8Sn0.2 [J]. J. Electron. Mater., 2013, 42: 1707 | [3] | ZhangB, ZhengT, SunC, et al. Electrical transport characterization of Al and Sn doped Mg2Si thin films [J]. J. Alloys Compd., 2017, 720: 156 | [4] | JangJ, RyuB, JaeJ S, et al. Antimony-induced heterogeneous microstructure of Mg2Si0.6Sn0.4 thermoelectric materials and their thermoelectric properties [J]. J. Alloys Compd., 2018, 739: 129 | [5] | VlachosN, PolymerisG S, ManoliM, et al. Effect of antimony-doping and germanium on the highly efficient thermoelectric Si-rich-Mg2(Si, Sn, Ge) materials [J]. J. Alloys Compd., 2017, 714: 502 | [6] | IoannouM, PolymerisG S, HatzikraniotisE, et al. Effect of Bi-doping and Mg-excess on the thermoelectric properties of Mg2Si materials [J]. J. Phys. Chem. Solids, 2014, 75: 984 | [7] | LiuW, ZhangQ, YinK, et al. High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions [J]. J. Solid State Chem., 2013, 203: 333 | [8] | GaoH L, LiuX X, ZhuT J, et al. Effect of Sb doping on the thermoelectric properties of Mg2Si0.7Sn0.3 solid solutions [J]. J. Electron. Mater., 2011, 40: 830 | [9] | TangX D, ZhangY M, ZhengY, et al. Improving thermoelectric performance of p-type Ag-doped Mg2Si0.4Sn0.6 prepared by unique melt spinning method [J]. Appl. Thermal Eng., 2017, 111: 1396 | [10] | KimS, WiendlochaB, JinH, et al. Electronic structure and thermoelectric properties of p-type Ag-doped Mg2Sn and Mg2Sn1-xSix (x=0.05, 0.1) [J]. J. Appl. Phys., 2014, 116: 153706 | [11] | ChenZ J, ZhouB Y, LiJ X, et al. Thermoelectric properties of Al-doped Mg2Si thin films deposited by magnetron sputtering [J]. Appl. Surf. Sci., 2016, 386: 389 | [12] | PrahoveanuC, LacosteA, BéchuS, et al. Investigation of Mg2(Si, Sn) thin films for integrated thermoelectric devices [J]. J. Alloys Compd., 2015, 649: 573 | [13] | SongG H, LiuQ N, DuH, et al. The thermoelectric properties of the Mg2(Sn, Si) films by magnetron sputtering with different microstructure [J]. Surf. Coat. Technol., 2019, 359: 252 | [14] | JiangY H, ChiuI C, KaoP K, et al. Influence of rapid-thermal-annealing temperature on properties of rf-sputtered SnOx thin films [J]. Appl. Surf. Sci., 2015, 327: 358 | [15] | LiangL Y, LiuZ M, CaoH T, et al. Microstructural, optical, and electrical properties of SnO thin films prepared on quartz via a two-step method [J]. ACS Appl. Mater. Interface, 2010, 2: 1060 | [16] | KhanA U, VlachosN V, HatzikraniotisE, et al. Thermoelectric properties of highly efficient Bi-doped Mg2Si1-x-ySnxGey materials [J]. Acta Mater., 2014, 77: 43 | [17] | OgawaS, KatagiriA, ShimizuT, et al. Electrical properties of (110)-oriented nondoped Mg2Si films with p-type conduction prepared by RF magnetron sputtering method [J]. J. Electron. Mater., 2014, 43: 2269 | [18] | ImaiY, SohmaM, SuemasuT. Effect of oxygen incorporation in the Mg2Si lattice on its conductivity type—A possible reason of the p-type conductivity of postannealed Mg2Si thin film [J]. J. Alloys Compd., 2016, 676: 91 | [19] | MaoJ, ZhuH T, DingZ W, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials [J]. Science, 2019, 365: 495 | [20] | ZhangY, WangX L, YeohW K, et al. Electrical and thermoelectric properties of single-wall carbon nanotube doped Bi2Te3 [J]. Appl. Phys. Lett., 2012, 101: 031909 | [21] | TanM, DengY, WangY. Ordered structure and high thermoelectric properties of Bi2(Te, Se)3 nanowire array [J]. Nano Energy, 2014, 3: 144 | [22] | LinZ Y, YinA X, MaoJ, et al. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template [J]. Sci. Adv., 2016, 2: e1600993 | [23] | AoW Q, PengM, LiuF S, et al. High thermoelectric properties in Mg2Ge0.25Sn0.75-xSbx solid solution [J]. J. Electron. Mater., 2019, 48: 5959 | [24] | GaoH L, ZhuT J, ZhaoX B, et al. Influence of Sb doping on thermoelectric properties of Mg2Ge materials [J]. Intermetallics, 2015, 56: 33 | [25] | LiuW, TanX J, YinK, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions [J]. Phys. Rev. Lett., 2012, 108: 166601 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|