Please wait a minute...
金属学报  2019, Vol. 55 Issue (11): 1469-1476    DOI: 10.11900/0412.1961.2019.00115
  研究论文 本期目录 | 过刊浏览 |
溅射沉积Mg2(Sn, Si)薄膜组织结构与导电性能
宋贵宏1(),李贵鹏1,刘倩男1,杜昊2(),胡方1
1. 沈阳工业大学材料科学与工程学院 沈阳 110870
2. 中国科学院金属研究所 沈阳110016
Microstructure and Electric Conductance of Mg2(Sn, Si) Thin Films by Sputtering
SONG Guihong1(),LI Guipeng1,LIU Qiannan1,DU Hao2(),HU Fang1
1. School of Materials Science and Technology, Shenyang University of Technology, Shenyang 110870, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

宋贵宏,李贵鹏,刘倩男,杜昊,胡方. 溅射沉积Mg2(Sn, Si)薄膜组织结构与导电性能[J]. 金属学报, 2019, 55(11): 1469-1476.
Guihong SONG, Guipeng LI, Qiannan LIU, Hao DU, Fang HU. Microstructure and Electric Conductance of Mg2(Sn, Si) Thin Films by Sputtering[J]. Acta Metall Sin, 2019, 55(11): 1469-1476.

全文: PDF(7383 KB)   HTML
摘要: 

采用Mg-Sn-Si-Bi合金和高纯Mg双靶,通过转动基材并调节Mg靶溅射时间,在单晶Si(111)衬底上顺序沉积并获得了Mg含量变化的Mg-Sn-Si-Bi薄膜。结果表明,保持合金靶溅射时间不变,薄膜中Mg的含量随Mg靶溅射时间的延长明显增大,同时薄膜中Sn、Si的含量呈减小趋势。薄膜中Mg含量的变化导致其相结构和导电性能发生改变。当Mg含量(原子分数)由71.437%变化到64.497%,薄膜具有单一的立方Mg2(Sn, Si)固溶体相结构;当Mg含量减小到59.813%及以下时,薄膜中Mg2(Sn, Si)固溶体相消失而出现立方Mg2Sn和立方Mg2Si两相;随Mg含量进一步减小到54.006%,薄膜中除Mg2Sn相外还出现了金属Sn相,并且该金属相含量随Mg含量的减少而增大,相应的立方Mg2Sn相含量减少,但Mg2Si相含量几乎没有变化。单一固溶体立方相结构的薄膜具有较大的载流子浓度和迁移率,因此电导率较大。然而,薄膜中金属Sn相的出现导致载流子迁移率显著下降,薄膜导电率也明显降低。

关键词 Mg2(SnSi)薄膜Mg含量电导率迁移率XPS    
Abstract

The Mg content in Mg2(Sn, Si) films obtained by PVD method often deviates its stoichiometric composition due to the easy evaporation of Mg in low pressure. In order to control the Mg content in Mg2(Sn, Si) lattice and achieve enhancements in thermoelectric efficiency, The Mg-Sn-Si-Bi thin films were deposited on single Si(111) substrate using a Mg-Sn-Si-Bi alloy target and a high pure Mg target by magnetron sputtering alternately. The results show that the Mg content greatly increases, while contents of both Sn and Si decrease in the films with the increasing sputtering time of the Mg target. The thin films possess single cubic Mg2(Sn, Si) solution phase as the Mg content (atomic fraction) is in the range from 71.437% to 64.497%, the Mg2(Sn, Si) solution phase disappear and both of Mg2Sn and Mg2Si phases occur as the Mg content decreases below 59.813% in the films. Furthermore, the Mg2Sn phase decomposes and metal Sn occurs as the Mg content in the films decreases to 54.006%. The metal Sn content increases and the Mg2Sn phase content decreases with the decreasing Mg content in the films, accompanying the near invariable Mg2Sn phase content. XPS spectrum data show that Mg exhibits the tendency to lose electrons. However, the Sn, Si and Bi exhibit the tendency to obtain electrons in deposited films. It is indicated that the Mg-Sn-Si-Bi thin film with single cubic solution phase possesses higher conductivity due to its higher carrier concentration and higher mobility. The mobility greatly decreases due to the occurrence of metal Sn in the films, thus the conductivity of the films greatly decreases.

Key wordsMg2(Sn    Si) film    Mg content    conductivity    mobility    XPS
收稿日期: 2019-04-12     
ZTFLH:  TB383  
基金资助:国家自然科学基金项目No(51772193)
作者简介: 宋贵宏,男,1965年生,教授,博士
图1  不同Mg靶溅射时间沉积薄膜的XRD谱

Sample

No.

t

s

Atomic fraction / %
MgOSiSnBiSn in compoundMetal Sn
S18071.4374.5617.09312.9553.95212.955-
S27064.4979.9057.75716.5571.28316.557-
S36059.81311.0116.12121.7461.30621.746-
S45054.00615.0806.41123.6110.89113.18010.431
S54048.37415.8878.55826.3330.84714.05412.279
S63043.37521.3748.95725.6880.6049.08116.607
表1  不同Mg靶溅射时间沉积薄膜的元素含量
图2  不同Mg靶溅射时间沉积薄膜的表面形貌。
图3  沉积S1样品的XPS
图4  沉积S1样品O1s的XPS谱
图5  沉积S1样品红外透射率

Sample

No.

Hall coefficient

cm3·C-1

Bulk concentration

cm-3

Conductivity

S·cm-1

Mobility

cm2·V-1·s-1

S14.68×10-41.38×10224.43×10420.7
S29.48×10-47.18×10216.92×10465.4
S37.72×10-48.13×10216.20×10447.9
S42.10×10-37.83×10214.09×10432.6
S53.12×10-32.00×10213.62×10311.3
S64.09×10-21.53×10211.63×1026.7
表2  沉积薄膜的Hall系数、载流子浓度、电导率和迁移率
[1] ZhangX, LiuH L, LuQ M, et al. Enhanced thermoelectric performance of Mg2Si0.4Sn0.6 solid solutions by in nanostructures and minute Bi-doping [J]. Appl. Phys. Lett., 2013, 103: 063901
[2] Pshenai-SeverinD A, FedorovM I, SamuninA Y. The influence of grain boundary scattering on thermoelectric properties of Mg2Si and Mg2Si0.8Sn0.2 [J]. J. Electron. Mater., 2013, 42: 1707
[3] ZhangB, ZhengT, SunC, et al. Electrical transport characterization of Al and Sn doped Mg2Si thin films [J]. J. Alloys Compd., 2017, 720: 156
[4] JangJ, RyuB, JaeJ S, et al. Antimony-induced heterogeneous microstructure of Mg2Si0.6Sn0.4 thermoelectric materials and their thermoelectric properties [J]. J. Alloys Compd., 2018, 739: 129
[5] VlachosN, PolymerisG S, ManoliM, et al. Effect of antimony-doping and germanium on the highly efficient thermoelectric Si-rich-Mg2(Si, Sn, Ge) materials [J]. J. Alloys Compd., 2017, 714: 502
[6] IoannouM, PolymerisG S, HatzikraniotisE, et al. Effect of Bi-doping and Mg-excess on the thermoelectric properties of Mg2Si materials [J]. J. Phys. Chem. Solids, 2014, 75: 984
[7] LiuW, ZhangQ, YinK, et al. High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions [J]. J. Solid State Chem., 2013, 203: 333
[8] GaoH L, LiuX X, ZhuT J, et al. Effect of Sb doping on the thermoelectric properties of Mg2Si0.7Sn0.3 solid solutions [J]. J. Electron. Mater., 2011, 40: 830
[9] TangX D, ZhangY M, ZhengY, et al. Improving thermoelectric performance of p-type Ag-doped Mg2Si0.4Sn0.6 prepared by unique melt spinning method [J]. Appl. Thermal Eng., 2017, 111: 1396
[10] KimS, WiendlochaB, JinH, et al. Electronic structure and thermoelectric properties of p-type Ag-doped Mg2Sn and Mg2Sn1-xSix (x=0.05, 0.1) [J]. J. Appl. Phys., 2014, 116: 153706
[11] ChenZ J, ZhouB Y, LiJ X, et al. Thermoelectric properties of Al-doped Mg2Si thin films deposited by magnetron sputtering [J]. Appl. Surf. Sci., 2016, 386: 389
[12] PrahoveanuC, LacosteA, BéchuS, et al. Investigation of Mg2(Si, Sn) thin films for integrated thermoelectric devices [J]. J. Alloys Compd., 2015, 649: 573
[13] SongG H, LiuQ N, DuH, et al. The thermoelectric properties of the Mg2(Sn, Si) films by magnetron sputtering with different microstructure [J]. Surf. Coat. Technol., 2019, 359: 252
[14] JiangY H, ChiuI C, KaoP K, et al. Influence of rapid-thermal-annealing temperature on properties of rf-sputtered SnOx thin films [J]. Appl. Surf. Sci., 2015, 327: 358
[15] LiangL Y, LiuZ M, CaoH T, et al. Microstructural, optical, and electrical properties of SnO thin films prepared on quartz via a two-step method [J]. ACS Appl. Mater. Interface, 2010, 2: 1060
[16] KhanA U, VlachosN V, HatzikraniotisE, et al. Thermoelectric properties of highly efficient Bi-doped Mg2Si1-x-ySnxGey materials [J]. Acta Mater., 2014, 77: 43
[17] OgawaS, KatagiriA, ShimizuT, et al. Electrical properties of (110)-oriented nondoped Mg2Si films with p-type conduction prepared by RF magnetron sputtering method [J]. J. Electron. Mater., 2014, 43: 2269
[18] ImaiY, SohmaM, SuemasuT. Effect of oxygen incorporation in the Mg2Si lattice on its conductivity type—A possible reason of the p-type conductivity of postannealed Mg2Si thin film [J]. J. Alloys Compd., 2016, 676: 91
[19] MaoJ, ZhuH T, DingZ W, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials [J]. Science, 2019, 365: 495
[20] ZhangY, WangX L, YeohW K, et al. Electrical and thermoelectric properties of single-wall carbon nanotube doped Bi2Te3 [J]. Appl. Phys. Lett., 2012, 101: 031909
[21] TanM, DengY, WangY. Ordered structure and high thermoelectric properties of Bi2(Te, Se)3 nanowire array [J]. Nano Energy, 2014, 3: 144
[22] LinZ Y, YinA X, MaoJ, et al. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template [J]. Sci. Adv., 2016, 2: e1600993
[23] AoW Q, PengM, LiuF S, et al. High thermoelectric properties in Mg2Ge0.25Sn0.75-xSbx solid solution [J]. J. Electron. Mater., 2019, 48: 5959
[24] GaoH L, ZhuT J, ZhaoX B, et al. Influence of Sb doping on thermoelectric properties of Mg2Ge materials [J]. Intermetallics, 2015, 56: 33
[25] LiuW, TanX J, YinK, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions [J]. Phys. Rev. Lett., 2012, 108: 166601
[1] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[2] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[3] 赵立东, 王思宁, 肖钰. 热电材料的载流子迁移率优化[J]. 金属学报, 2021, 57(9): 1171-1183.
[4] 崔洋, 李寿航, 应韬, 鲍华, 曾小勤. 基于第一性原理的金属导热性能研究[J]. 金属学报, 2021, 57(3): 375-384.
[5] 厉英,丁玉石,崔绍刚,王常珍. 掺杂Sc的CaZrO3的制备及电学性能[J]. 金属学报, 2012, 48(5): 575-578.
[6] 宋鲁男 刘嘉斌 黄六一 曾跃武 孟亮. 强变形对Cu-Cr合金组织性能的影响[J]. 金属学报, 2012, 48(12): 1459-1466.
[7] 李贵茂 王恩刚 张林 左小伟 赫冀成. 强磁场对Cu-25%Ag合金析出相及性能的影响[J]. 金属学报, 2010, 46(9): 1128-1132.
[8] 刘爱萍 朱嘉琦 唐为华 李超荣. 掺磷四面体非晶碳薄膜的电学性能[J]. 金属学报, 2010, 46(2): 201-205.
[9] 李付绍 安茂忠 刘光洲 段东霞. 硫酸盐还原菌对18--8不锈钢点蚀行为的影响[J]. 金属学报, 2009, 45(5): 536-540.
[10] 刘志敏; 杜昊; 石南林; 闻立时 . 铝膜电导率尺寸效应对其微波性能的影响[J]. 金属学报, 2008, 44(9): 1099-1104 .
[11] 曲文生; 张功; 楼琅洪; 董加胜; 杨柯 . NiSO4和NaCl含量对电镀Ni溶液分散能力和Ni沉积层的影响[J]. 金属学报, 2008, 44(3): 341-345 .
[12] 张雷; 孟亮 . 应变程度对Cu-12%Ag合金纤维相形成及导电性能的影响[J]. 金属学报, 2005, 41(3): 255-259 .
[13] 颜芳; 孟亮; 张雷 . 热处理温度对纤维相强化Cu--12Ag合金组织性能的影响[J]. 金属学报, 2004, 40(8): 887-890 .
[14] 钟和香; 王淑兰; 张丽君 . TiC对高钛渣电导率的影响[J]. 金属学报, 2004, 40(5): 515-517 .
[15] 钟和香; 王淑兰; 张丽君 . TiC对高钛渣电导率的影响[J]. 金属学报, 2004, 40(5): 515-517 .