Please wait a minute...
金属学报  2017, Vol. 53 Issue (2): 153-162    DOI: 10.11900/0412.1961.2016.00143
  本期目录 | 过刊浏览 |
新型含Cu管线钢的微生物腐蚀行为研究
史显波1,2,徐大可1,闫茂成1,严伟1,单以银1,杨柯1()
1 中国科学院金属研究所 沈阳 110016
2 中国科学院大学 北京 100049
Study on Microbiologically Influenced Corrosion Behavior of Novel Cu-Bearing Pipeline Steels
Xianbo SHI1,2,Dake XU1,Maocheng YAN1,Wei YAN1,Yiyin SHAN1,Ke YANG1()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
Xianbo SHI, Dake XU, Maocheng YAN, Wei YAN, Yiyin SHAN, Ke YANG. Study on Microbiologically Influenced Corrosion Behavior of Novel Cu-Bearing Pipeline Steels[J]. Acta Metall Sin, 2017, 53(2): 153-162.

全文: PDF(7965 KB)   HTML
摘要: 

通过对商用X80管线钢进行适当的Cu合金化功能性改进,制备出不同Cu含量(1.06Cu、1.46Cu、2.00Cu,质量分数,%)的新型管线钢。利用抗菌性能检测、电化学测试、腐蚀产物分析、激光共聚焦显微镜(CLSM)等方法研究了含Cu管线钢的抗菌性能和微生物腐蚀行为。研究表明,含Cu管线钢对大肠杆菌和金黄色葡萄球菌均具有强烈的杀灭作用,以多边形铁素体为特征的1.0Cu管线钢能够保证在X80钢强韧性的水平下具有优异的抗微生物腐蚀性能。含Cu管线钢中富Cu相对抗微生物腐蚀性能起到了关键作用。1.0Cu钢和X80钢的线性极化电阻RLPR在含有硫酸盐还原菌(SRB)的土壤浸出液中浸泡2 d后均急剧下降,导致X80钢的腐蚀电流密度明显大于1.0Cu钢。显微观察表明,大量生物膜的生成导致在SRB环境中的X80钢的点蚀数量和最大点蚀坑深度均高于1.0Cu钢。

关键词 管线钢Cu微生物腐蚀富Cu相抗菌性能    
Abstract

Microbiologically influenced corrosion (MIC) is a major corrosion related problem for steel pipelines. The great loss caused by microbiologically influenced corrosion (MIC) on buried pipelines has been paid considerable attention domestically and internationally. Various physical, chemical or biological strategies have been used for MIC control, including biocides, coatings, cathodic protection and biocompetitive exclusion. These strategies have limitations of being expensive, subject to environmental restrictions, and sometimes inefficient. There is an urgent need for oil industry to develop environmentally friendly strategies for microbial corrosion control. Cu could play many benefical effects in steels, such as exerting a vigorous effect on hardenability, enhancing strength via precipitation strengthening, improving fatigue resistance, reducing susceptibility of hydrogen embrittlement, promoting formation protective layer etc.. Cu is well known for its inherent antimicrobial properties and is the focus of interest for potential application as a component in antibacterial materials. The Cu-bearing antibacterial stainless steel, characterized by continuous release of Cu ions with antibacterial function, provides analogy to develop a new type of MIC resistance pipeline steel. In this work, three different Cu contents (1.06Cu,1.46Cu,2.00Cu, mass fraction, %) pipeline steels, named 1.0Cu, 1.5Cu and 2.0Cu, were fabricated by making proper Cu alloying designs for X80 steel that currently used in oil/gas industry. Study on antibacterial performance and MIC behavior of novel Cu-bearing pipeline steels against Escherichiacoli (E.coli), Staphylococcusaureus (S.aureus) and Sulphate reducing bacteria (SRB) was carried out by antibacterial tests, electrochemistrical monitor, corrosion product analyses and confocal laser scanning microscope (CLSM). The results showed that Cu-bearing pipeline steels had strong antibacterial performance against E.coli and S.aureus compared with X80 steel. 1.0Cu steel with the microstructure of polygonal ferrite showed excellent resistance to SRB with remarkable strength enhancement by nano-scale Cu-rich precipitates and good impact toughness compared with X80 steel. Cu-rich precipitates in Cu-bearing pipeline steels were found to be responsible for the antibacterial capability. The linear polarization resistances (RLPR) of both X80 and 1.0Cu steels in the soil-extract solution with SRB were dramatically decreased after 2 d, leading to the corrosion current density (icorr) value of X80 steel was much higher than that of 1.0Cu steel. The corrosion product analysis results showed that much biofilm produced by SRB was the reason that many pits and larger pit depth on X80 steel than that of 1.0Cu steel.

Key wordspipeline steel    Cu    microbiologically influenced corrosion    Cu-rich phase    antibacterial performance
收稿日期: 2016-04-18     
基金资助:国家科技支撑计划项目No.2011BAE25B03和国家自然科学基金项目No.51271175
Steel C Si Mn Mo Cu Ni Nb S P Cr V Fe
1.0Cu 0.031 0.14 1.09 0.31 1.06 0.32 0.05 0.0011 0.005 0.32 - Bal.
1.5Cu 0.019 0.12 1.03 0.31 1.46 0.31 0.05 0.0011 0.005 0.31 - Bal.
2.0Cu 0.023 0.13 1.06 0.30 2.00 0.30 0.05 0.0010 0.005 0.30 - Bal.
X80 0.028 0.28 1.90 0.22 0.20 0.29 0.08 0.0020 0.012 - 0.03 Bal.
表1  实验用钢的化学成分
图1  不同含Cu钢和商用X80钢的轧态显微组织形貌以及相应的时效态下的精细组织结构
Steel As-rolled As-aged (500 ℃, 1 h)
σs / MPa σb / MPa δ / % AkV / J σs / MPa σb / MPa δ / % AkV / J
1.0Cu 443 651 30.0 141** 646 722 26.5 114**
1.5Cu 513 645 28.0 82** 728 794 24.0 60**
2.0Cu 608 759 25.0 66** 832 909 20.5 42**
X80 608 677 23.5 134** * * * *
表2  实验用钢的力学性能
图2  含Cu管线钢在不同状态下对大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)的杀菌率
图3  X80管线钢和时效态含Cu管线钢的灭杀大肠杆菌效果图
图4  X80管线钢和时效态、轧制态含Cu管线钢的灭杀金黄色葡萄球菌效果图
图5  X80钢和1.0Cu钢在含有SRB的土壤浸出液中的线性极化电阻和腐蚀电流密度曲线
图6  1.0Cu钢和X80钢在含有SRB的土壤浸出液中浸泡20 d后的表面腐蚀产物形貌和EDS分析
图7  1.0Cu钢和X80钢在含有SRB的土壤浸出液中浸泡20 d后的表面腐蚀形貌
图8  1.0Cu钢和X80钢在含有SRB的土壤浸出液中浸泡20 d后的最大点蚀坑三维形貌
[1] Liu H W, Xu D K, Wu Y N, et al.Research progress in corrosion of steels induced by sulfate reducing bacteria[J]. Corros. Sci. Prot. Technol., 2015, 27: 409
[1] (刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展[J]. 腐蚀科学与防护技术, 2015, 27: 409)
[2] Videla H A.Manual of Biocorrosion[D][M]. Boca Raton: CRC-Press, 1996: 13
[3] Javaherdashti R.A review of some characteristics of MIC caused by sulfate-reducing bacteria: past, present and future[J]. Anti-Corros. Method. M., 1999, 46: 173
[4] Videla H A.Prevention and control of biocorrosion[J]. Int. Biodeter. Biodegr., 2002, 49: 259
[5] Li S Y, Kim Y G, Jeon K S, et al.Microbiologically influenced corrosion of underground pipelines under the disbonded coatings[J]. Met. Mater., 2000, 6: 281
[6] Jacobson G A.Corrosion at prudhoe bay—A lesson on the line[J]. Mater. Perform., 2007, 46: 26
[7] Bhat S, Kumar B, Prasad S R, et al.Failure of a new 8-in pipeline from group gathering station to central tank farm[J]. Mater. Perform., 2011, 50: 50
[8] Niu T, Yang J W, Wang L, et al.Pitting mechanism of X60 pipeline steel under the action of SRB[J]. Corros. Prot., 2014, 35: 1060
[8] (牛涛, 杨建炜, 王林等. 硫酸盐还原菌作用下X60管线钢的腐蚀穿孔机制[J]. 腐蚀与防护, 2014, 35: 1060)
[9] Yin Y S, Dong L H, Liu T, et al.Microbiologically Influenced Corrosion of Materials Used in Ocean [M]. Beijing: Chemical Science Press, 2012: 1
[9] (尹衍升, 董丽华, 刘涛等. 海洋材料的微生物附着腐蚀 [M]. 北京: 科学出版社, 2012: 1)
[10] Hall-Stoodley L, Costerton J W, Stoodley P.Bacterial biofilms: from the natural environment to infectious diseases[J]. Nat. Rev. Microbiol., 2004, 2: 95
[11] Wang M F, Liu H F, Xu L M.Applied research on the competitive growth of bacteria in biological control of MIC[J]. J. Chin. Soc. Corros. Prot., 2004, 24: 159
[11] (汪梅芳, 刘宏芳, 许立铭. 细菌竞争生长在微生物腐蚀防治中的应用研究[J]. 中国腐蚀与防护学报, 2004, 24: 159)
[12] Dong Z H, Guo X P, Liu H F.Study on electrochemistry characteristics in MIC by wire beam electrodes[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 48
[12] (董泽华, 郭兴蓬, 刘宏芳. 用丝束电极研究SRB微生物诱导腐蚀的电化学特征[J]. 中国腐蚀与防护学报, 2002, 22: 48)
[13] Venzlaff H, Enning D, Srinivasan J, et al.Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria[J]. Corros. Sci., 2013, 66: 88
[14] Xu D K, Li Y C, Song F M, et al.Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis[J]. Corros. Sci., 2013, 77: 385
[15] Xu D K, Li Y C, Gu T Y.Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria[J]. Bioelectrochemistry, 2016, 110: 52
[16] Li H B, Zhou E Z, Zhang D W, et al.Microbiologically influenced corrosion of 2707 hyper-duplex stainless steel by marine Pseudomonas aeruginosa biofilm[J]. Sci. Rep., 2016, 6: 20190
[17] Xu D K, Gu T Y.Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm[J]. Int. Biodeter. Biodegr., 2014, 91: 74
[18] Xia J, Xu D K, Nan L, et al.Study on mechanisms of microbiologically influenced corrision of metal from the perspective of bio-electrochemistry and bio-energetics[J]. Chin. J. Mater. Res., 2016, 30: 161
[18] (夏进, 徐大可, 南黎等. 从生物能量学和生物电化学角度研究金属微生物腐蚀的机理[J]. 材料研究学报, 2016, 30: 161)
[19] Yan M C, Wang J Q, Han E-H, et al.Characteristics and evolution of thin layer electrolyte on pipeline steel under cathodic protection shielding disbonded coating[J]. Acta Metall. Sin., 2014, 50: 1137
[19] (闫茂成, 王俭秋, 韩恩厚等. 埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化[J]. 金属学报, 2014, 50: 1137)
[20] Chen S H, Lv M Q, Zhang J D, et al.Microstructure and antibacterial properties of Cu-contained antibacterial stainless steel[J]. Acta Metall. Sin.,2004, 40: 314
[20] (陈四红, 吕曼祺, 张敬党等. 含Cu抗菌不锈钢的微观组织及其抗菌性能[D] [J]. 金属学报, 2004, 40: 314)
[21] Nan L, Liu Y Q, Yang W C, et al.Study on antibacterial properties of copper-containing antibacterial stainless steels[J]. Acta Metall. Sin., 2007, 43: 1065
[21] (南黎, 刘永前, 杨伟超等. 含铜抗菌不锈钢的抗菌特性研究[J]. 金属学报, 2007, 43: 1065)
[22] Wang S, Yang C G, Xu D K, et al.Effect of heat treatment on antibacterial performance of 3Cr13MoCu martensitic stainless steel[J]. Acta Metall. Sin., 2014, 50: 1453
[22] (王帅, 杨春光, 徐大可等. 热处理对3Cr13MoCu马氏体不锈钢抗菌性能的影响[J]. 金属学报, 2014, 50: 1453)
[23] Wu T Q, Ding W C, Zeng D C, et al.Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (I) electrochemical analysis[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346
[23] (吴堂清, 丁万成, 曾德春等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (I) 电化学分析[J]. 中国腐蚀与防护学报, 2014, 34: 346)
[24] Zhao M C, Xiao F R, Shan Y Y, et al.Microstructural characteristic and toughening of an ultralow carbon acicular ferrite pipeline steel[J]. Acta Metall. Sin., 2002, 38: 283
[24] (赵明纯, 肖福仁, 单以银等. 超低碳针状铁素体管线钢的显微特征及强韧性行为[J]. 金属学报, 2002, 38: 283)
[25] Nan L, Cheng J L, Yang K.Antibacterial behavior of a Cu-bearing type 200 stainless steel[J]. J. Mater. Sci. Technol., 2012, 28: 1067
[26] Ren L, Yang K.Bio-functional design for metal implants, a new concept for development of metallic biomaterials[J]. J. Mater. Sci. Technol., 2013, 29: 1005
[27] Zou Y, Wang J, Zheng Y Y.Electrochemical techniques for determining corrosion rate of rusted steel in seawater[J]. Corros. Sci., 2011, 53: 208
[28] Wu T Q, Xu J, Yan M C, et al.Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution[J]. Corros. Sci., 2014, 83: 38
[29] Alabbas F M, Williamson C, Bhola S M, et al.Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80)[J]. Int. Biodeter. Biodegr., 2013, 78: 34
[30] Castaneda H, Benetton X D.SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions[J]. Corros. Sci., 2008, 50: 1169
[31] O'Gorman J, Humphreys H. Application of copper to prevent and control infection. Where are we now?[J]. J. Hosp. Infect., 2012, 81: 217
[32] Shi X B, Yan W, Wang W, et al.Novel Cu-bearing high-strength pipeline steels with excellent resistance to hydrogen-induced cracking[J]. Mater. Des., 2016, 92: 300
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[4] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[5] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[6] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[7] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[8] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[9] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[10] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[11] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[12] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[13] 朱小绘, 刘向兵, 王润中, 李远飞, 刘文庆. 290℃氩离子辐照对Fe-Cu合金微观组织的影响[J]. 金属学报, 2022, 58(7): 905-910.
[14] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[15] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.