|
|
新型含Cu管线钢的微生物腐蚀行为研究 |
史显波1,2,徐大可1,闫茂成1,严伟1,单以银1,杨柯1( ) |
1 中国科学院金属研究所 沈阳 110016 2 中国科学院大学 北京 100049 |
|
Study on Microbiologically Influenced Corrosion Behavior of Novel Cu-Bearing Pipeline Steels |
Xianbo SHI1,2,Dake XU1,Maocheng YAN1,Wei YAN1,Yiyin SHAN1,Ke YANG1( ) |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 University of Chinese Academy of Sciences, Beijing 100049, China |
引用本文:
史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
Xianbo SHI,
Dake XU,
Maocheng YAN,
Wei YAN,
Yiyin SHAN,
Ke YANG.
Study on Microbiologically Influenced Corrosion Behavior of Novel Cu-Bearing Pipeline Steels[J]. Acta Metall Sin, 2017, 53(2): 153-162.
[1] | Liu H W, Xu D K, Wu Y N, et al.Research progress in corrosion of steels induced by sulfate reducing bacteria[J]. Corros. Sci. Prot. Technol., 2015, 27: 409 | [1] | (刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展[J]. 腐蚀科学与防护技术, 2015, 27: 409) | [2] | Videla H A.Manual of Biocorrosion[D][M]. Boca Raton: CRC-Press, 1996: 13 | [3] | Javaherdashti R.A review of some characteristics of MIC caused by sulfate-reducing bacteria: past, present and future[J]. Anti-Corros. Method. M., 1999, 46: 173 | [4] | Videla H A.Prevention and control of biocorrosion[J]. Int. Biodeter. Biodegr., 2002, 49: 259 | [5] | Li S Y, Kim Y G, Jeon K S, et al.Microbiologically influenced corrosion of underground pipelines under the disbonded coatings[J]. Met. Mater., 2000, 6: 281 | [6] | Jacobson G A.Corrosion at prudhoe bay—A lesson on the line[J]. Mater. Perform., 2007, 46: 26 | [7] | Bhat S, Kumar B, Prasad S R, et al.Failure of a new 8-in pipeline from group gathering station to central tank farm[J]. Mater. Perform., 2011, 50: 50 | [8] | Niu T, Yang J W, Wang L, et al.Pitting mechanism of X60 pipeline steel under the action of SRB[J]. Corros. Prot., 2014, 35: 1060 | [8] | (牛涛, 杨建炜, 王林等. 硫酸盐还原菌作用下X60管线钢的腐蚀穿孔机制[J]. 腐蚀与防护, 2014, 35: 1060) | [9] | Yin Y S, Dong L H, Liu T, et al.Microbiologically Influenced Corrosion of Materials Used in Ocean [M]. Beijing: Chemical Science Press, 2012: 1 | [9] | (尹衍升, 董丽华, 刘涛等. 海洋材料的微生物附着腐蚀 [M]. 北京: 科学出版社, 2012: 1) | [10] | Hall-Stoodley L, Costerton J W, Stoodley P.Bacterial biofilms: from the natural environment to infectious diseases[J]. Nat. Rev. Microbiol., 2004, 2: 95 | [11] | Wang M F, Liu H F, Xu L M.Applied research on the competitive growth of bacteria in biological control of MIC[J]. J. Chin. Soc. Corros. Prot., 2004, 24: 159 | [11] | (汪梅芳, 刘宏芳, 许立铭. 细菌竞争生长在微生物腐蚀防治中的应用研究[J]. 中国腐蚀与防护学报, 2004, 24: 159) | [12] | Dong Z H, Guo X P, Liu H F.Study on electrochemistry characteristics in MIC by wire beam electrodes[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 48 | [12] | (董泽华, 郭兴蓬, 刘宏芳. 用丝束电极研究SRB微生物诱导腐蚀的电化学特征[J]. 中国腐蚀与防护学报, 2002, 22: 48) | [13] | Venzlaff H, Enning D, Srinivasan J, et al.Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria[J]. Corros. Sci., 2013, 66: 88 | [14] | Xu D K, Li Y C, Song F M, et al.Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis[J]. Corros. Sci., 2013, 77: 385 | [15] | Xu D K, Li Y C, Gu T Y.Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria[J]. Bioelectrochemistry, 2016, 110: 52 | [16] | Li H B, Zhou E Z, Zhang D W, et al.Microbiologically influenced corrosion of 2707 hyper-duplex stainless steel by marine Pseudomonas aeruginosa biofilm[J]. Sci. Rep., 2016, 6: 20190 | [17] | Xu D K, Gu T Y.Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm[J]. Int. Biodeter. Biodegr., 2014, 91: 74 | [18] | Xia J, Xu D K, Nan L, et al.Study on mechanisms of microbiologically influenced corrision of metal from the perspective of bio-electrochemistry and bio-energetics[J]. Chin. J. Mater. Res., 2016, 30: 161 | [18] | (夏进, 徐大可, 南黎等. 从生物能量学和生物电化学角度研究金属微生物腐蚀的机理[J]. 材料研究学报, 2016, 30: 161) | [19] | Yan M C, Wang J Q, Han E-H, et al.Characteristics and evolution of thin layer electrolyte on pipeline steel under cathodic protection shielding disbonded coating[J]. Acta Metall. Sin., 2014, 50: 1137 | [19] | (闫茂成, 王俭秋, 韩恩厚等. 埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化[J]. 金属学报, 2014, 50: 1137) | [20] | Chen S H, Lv M Q, Zhang J D, et al.Microstructure and antibacterial properties of Cu-contained antibacterial stainless steel[J]. Acta Metall. Sin.,2004, 40: 314 | [20] | (陈四红, 吕曼祺, 张敬党等. 含Cu抗菌不锈钢的微观组织及其抗菌性能[D] [J]. 金属学报, 2004, 40: 314) | [21] | Nan L, Liu Y Q, Yang W C, et al.Study on antibacterial properties of copper-containing antibacterial stainless steels[J]. Acta Metall. Sin., 2007, 43: 1065 | [21] | (南黎, 刘永前, 杨伟超等. 含铜抗菌不锈钢的抗菌特性研究[J]. 金属学报, 2007, 43: 1065) | [22] | Wang S, Yang C G, Xu D K, et al.Effect of heat treatment on antibacterial performance of 3Cr13MoCu martensitic stainless steel[J]. Acta Metall. Sin., 2014, 50: 1453 | [22] | (王帅, 杨春光, 徐大可等. 热处理对3Cr13MoCu马氏体不锈钢抗菌性能的影响[J]. 金属学报, 2014, 50: 1453) | [23] | Wu T Q, Ding W C, Zeng D C, et al.Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (I) electrochemical analysis[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346 | [23] | (吴堂清, 丁万成, 曾德春等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (I) 电化学分析[J]. 中国腐蚀与防护学报, 2014, 34: 346) | [24] | Zhao M C, Xiao F R, Shan Y Y, et al.Microstructural characteristic and toughening of an ultralow carbon acicular ferrite pipeline steel[J]. Acta Metall. Sin., 2002, 38: 283 | [24] | (赵明纯, 肖福仁, 单以银等. 超低碳针状铁素体管线钢的显微特征及强韧性行为[J]. 金属学报, 2002, 38: 283) | [25] | Nan L, Cheng J L, Yang K.Antibacterial behavior of a Cu-bearing type 200 stainless steel[J]. J. Mater. Sci. Technol., 2012, 28: 1067 | [26] | Ren L, Yang K.Bio-functional design for metal implants, a new concept for development of metallic biomaterials[J]. J. Mater. Sci. Technol., 2013, 29: 1005 | [27] | Zou Y, Wang J, Zheng Y Y.Electrochemical techniques for determining corrosion rate of rusted steel in seawater[J]. Corros. Sci., 2011, 53: 208 | [28] | Wu T Q, Xu J, Yan M C, et al.Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution[J]. Corros. Sci., 2014, 83: 38 | [29] | Alabbas F M, Williamson C, Bhola S M, et al.Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80)[J]. Int. Biodeter. Biodegr., 2013, 78: 34 | [30] | Castaneda H, Benetton X D.SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions[J]. Corros. Sci., 2008, 50: 1169 | [31] | O'Gorman J, Humphreys H. Application of copper to prevent and control infection. Where are we now?[J]. J. Hosp. Infect., 2012, 81: 217 | [32] | Shi X B, Yan W, Wang W, et al.Novel Cu-bearing high-strength pipeline steels with excellent resistance to hydrogen-induced cracking[J]. Mater. Des., 2016, 92: 300 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|