|
|
X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟 |
张体明1,2, 赵卫民1( ), 蒋伟1, 王永霖1, 杨敏1 |
1 中国石油大学(华东)材料科学与工程学院 青岛 266580 2 南昌航空大学航空制造工程学院 南昌 330063 |
|
Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity |
Timing ZHANG1,2, Weimin ZHAO1( ), Wei JIANG1, Yonglin WANG1, Min YANG1 |
1 School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China 2 School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China |
引用本文:
张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
Timing ZHANG,
Weimin ZHAO,
Wei JIANG,
Yonglin WANG,
Min YANG.
Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. Acta Metall Sin, 2019, 55(2): 258-266.
[1] | Hao X Q, An H Z, Qi H, et al.Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network[J]. Appl. Energy, 2016, 162: 1515 | [2] | Dodds P E, McDowall W. The future of the UK gas network[J]. Energy Policy, 2013, 60: 305 | [3] | Nie W J, Shang C J, You Y, et al.Microstructure and toughness of the simulated welding heat affected zone in X100 pipeline steel with high deformation resistance[J]. Acta Metall. Sin., 2012, 48: 797(聂文金, 尚成嘉, 由洋等. 抗变形X100管线钢模拟焊接热影响区的组织与韧性研究[J]. 金属学报, 2012, 48: 797) | [4] | Briottet L,Batisse R, de Dinechin G, et al.Recommendations on X80 steel for the design of hydrogen gas transmission pipelines[J]. Int. J. Hydrogen Energy, 2012, 37: 9423 | [5] | Dodds P E, Demoullin S.Conversion of the UK gas system to transport hydrogen[J]. Int. J. Hydrogen Energy, 2013, 38: 7189 | [6] | Miao C L, Shang C J, Wang X M, et al.Microstructure and toughness of HAZ in X80 pipeline steel with high Nb content[J]. Acta Metall. Sin., 2010, 46: 541(缪成亮, 尚成嘉, 王学敏等. 高Nb X80管线钢焊接热影响区显微组织与韧性[J]. 金属学报, 2010, 46: 541) | [7] | Zhu Z X, Kuzmikova L, Li H J, et al.The effect of chemical composition on microstructure and properties of intercritically reheated coarse-grained heat-affected zone in X70 steels[J]. Metall. Mater. Trans., 2014, 45B: 229 | [8] | Chen X W, Qiao G Y, Han X L, et al.Effects of Mo, Cr and Nb on microstructure and mechanical properties of heat affected zone for Nb-bearing X80 pipeline steels[J]. Mater. Des., 2014, 53: 888 | [9] | Sowards J W, Gn?upel-Herold T, McColskey J D, et al. Characterization of mechanical properties, fatigue-crack propagation, and residual stresses in a microalloyed pipeline-steel friction-stir weld[J]. Mater. Des., 2015, 88: 632 | [10] | Nasim K, Arif A F M, Al-Nassar Y N,D, et al. Investigation of residual stress development in spiral welded pipe[J]. J. Mater. Process. Technol., 2015, 215: 225 | [11] | Salerno G, Bennett C, Sun W, et al.On the interaction between welding residual stresses: A numerical and experimental investigation[J]. Int. J. Mech. Sci., 2018, 144: 654 | [12] | Jebaraj J J M, Morrison D J, Suni I I. Hydrogen diffusion coefficients through Inconel 718 in different metallurgical conditions[J]. Corros. Sci., 2014, 80: 517 | [13] | Rezende M C, Araujo L S, Gabriel S B, et al.Hydrogen embrittlement in nickel-based superalloy 718: Relationship between γ′+γ″ precipitation and the fracture mode[J]. Int. J. Hydrogen Energy, 2015, 40: 17075 | [14] | Zhang T M, Wang Y, Zhao W M, et al.Hydrogen permeation parameters of X80 steel and welding HAZ under high pressure coal gas environment[J]. Acta Metall. Sin., 2015, 51: 1101(张体明, 王勇, 赵卫民等. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51: 1101) | [15] | Zhao W M, Zhang T M, Zhao Y J, et al.Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment[J]. Corros. Sci., 2016, 111: 84 | [16] | Yan C Y, Liu C Y, Yan B.3D modeling of the hydrogen distribution in X80 pipeline steel welded joints[J]. Comput. Mater. Sci., 2014, 83: 158 | [17] | Jiang W C, Gong J M, Tang J Q, et al.Finite element simulation of the effect of welding residual stress on hydrogen diffusion[J]. Acta Metall. Sin., 2006, 42: 1221(蒋文春, 巩建鸣, 唐建群等. 焊接残余应力对氢扩散影响的有限元模拟[J]. 金属学报, 2006, 42: 1221) | [18] | Chu W Y, Qiao L J, Li J X, et al.Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 37(褚武扬, 乔利杰, 李金许等. 氢脆和应力腐蚀——基础部分 [M]. 北京: 科学出版社, 2013: 37) | [19] | Toribio J, Kharin K, Lorenzo M, et al.Role of drawing-induced residual stresses and strains in the hydrogen embrittlement susceptibility of prestressing steels[J]. Corros. Sci., 2011, 53: 3346 | [20] | Zhang X H, Tan C Y, Chen P Y.Numerical simulation of hydrogen diffusion in welded joint[J]. Trans. China Weld. Inst., 2000, 21(3): 51(张显辉, 谭长瑛, 陈佩寅. 焊接接头氢扩散数值模拟(I)[J]. 焊接学报, 2000, 21(3): 51) | [21] | Bell D.Divergence theorems in path space III: Hypoelliptic diffusions and beyond[J]. J. Funct. Anal., 2007, 251: 232 | [22] | Chu W Y, Qiao L J, Chen Q Z, et al.Fracture and Environmental Fracture [M]. Beijing: Science Press, 2000: 99(褚武扬, 乔利杰, 陈奇志等. 断裂与环境断裂 [M]. 北京: 科学出版社, 2000: 99) | [23] | Wang Y F, Gong J M, Jiang W C.A quantitative description on fracture toughness of steels in hydrogen gas[J]. Int. J. Hydrogen Energy, 2013, 38: 12503 | [24] | Jiang W C, Gong J M, Tang J Q, et al.Numerical simulation of hydrogen diffusion under welding residual stress[J]. Trans. China Weld. Inst., 2006, 27(11): 57(蒋文春, 龚建鸣, 唐建群等. 焊接残余应力下氢扩散的数值模拟[J]. 焊接学报, 2006, 27(11): 57) | [25] | Nanninga N E, Levy Y S, Drexler E S, et al.Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments[J]. Corros. Sci., 2012, 59: 1 | [26] | Kong D J, Wu Y Z, Long D.Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions[J]. J. Iron Steel Res., Int., 2013, 20: 40 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|