Please wait a minute...
金属学报  2019, Vol. 55 Issue (2): 258-266    DOI: 10.11900/0412.1961.2018.00060
  本期目录 | 过刊浏览 |
X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟
张体明1,2, 赵卫民1(), 蒋伟1, 王永霖1, 杨敏1
1 中国石油大学(华东)材料科学与工程学院 青岛 266580
2 南昌航空大学航空制造工程学院 南昌 330063
Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity
Timing ZHANG1,2, Weimin ZHAO1(), Wei JIANG1, Yonglin WANG1, Min YANG1
1 School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
2 School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
引用本文:

张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. Acta Metall Sin, 2019, 55(2): 258-266.

全文: PDF(4999 KB)   HTML
摘要: 

采用ABAQUS软件建立了煤制气管线X80钢螺旋焊管三维模型,综合考虑焊接残余应力和组织不均匀性的影响,进行了焊接接头氢扩散的数值模拟。结果表明,残余应力和组织不均匀都会导致氢扩散的发生,氢浓度的分布规律与静水应力分布特征相似,即静水应力越高的区域,相应的氢浓度也较高,说明残余应力的影响大于组织不均匀性的影响。氢浓度最高的焊缝区比不考虑残余应力时提高了2.7倍,通过等效充氢压力下的慢应变速率拉伸实验发现,氢脆系数由不考虑残余应力时的18.56%上升至考虑残余应力所致氢富集条件下的32.53%,增加幅度达到75.27%。因此,残余应力是导致焊接接头氢富集进而影响氢脆失效的重要因素,采用数值模拟方法确定氢富集程度则是评估煤制气管线焊接接头安全性的重要基础。

关键词 X80管线钢煤制气焊接接头残余应力氢富集    
Abstract

Welded joints of hydrogen-containing coal gas transmission pipelines are prone to hydrogen enrichment due to their severe microstructure inhomogeneity and residual stress in them, and thus lead to the decrease of plasticity and toughness. In order to investigate the effect of local hydrogen enrichment on the safety of hydrogen-containing coal gas transport pipelines, a three dimensional numerical simulation model was established to investigate the hydrogen diffusion behaviour considering the combined effect of microstructure inhomogeneity and residual stress in X80 spiral welded pipeline by using ABAQUS software. Results showed that both microstructure inhomogeneity and residual stress could lead to hydrogen diffusion. The distribution of hydrogen concentration in the pipeline was similar to that of hydrostatic stress distribution. That is, the higher the hydrostatic stress value, the higher the corresponding hydrogen concentration, indicating that the influence of residual stress on the hydrogen diffusion behaviour is greater than that of microstructure inhomogeneity. The enriched hydrogen concentration at the center region of the welded joint with the highest residual stress was 2.7 times higher than that without considering residual stress. Equivalent charging hydrogen pressure was put forward to reflect the degree of hydrogen enrichment in weld metal. Slow strain rate tension (SSRT) tests were subsequently performed on weld metal specimen at equivalent charging hydrogen pressure to investigate the effect of hydrogen enrichment on hydrogen embrittlement (HE) susceptibility. The SSRT tests performed in nitrogen gas and simulated coal gas were used for comparison. The HE index increased from 18.56% in simulated coal gas to 32.53% in equivalent charging hydrogen pressure, increasing by 75.27%. Therefore, the residual stress is a non-ignorable factor, because it could lead to hydrogen enrichment and could significantly influence HE susceptibility in welded joint. The determination of hydrogen enrichment in welded joint by using numerical simulation method is the basis to evaluate the safety of coal gas transmission pipeline.

Key wordsX80 pipeline steel    coal gas    welded joint    residual stress    hydrogen enrichment
收稿日期: 2018-02-07     
ZTFLH:  TE88  
基金资助:资助项目 国家自然科学基金项目No.51705535,中国博士后科学基金项目No.2016M602218及山东省自然科学基金项目No.ZR2017MEE005
作者简介:

作者简介 张体明,男,1987年生,博士

Type Material d
mm
I
A
U
V
v
mmin-1
Former wire H08C 4.0 1100 33 1.3
Latter wire H08C 4.0 500 34 1.3
表1  螺旋焊管焊接材料及工艺参数
图1  焊接接头形貌及尺寸
图2  焊接接头各区在模拟煤制气中的氢渗透曲线
Region i / (μAcm-2) D / (10-6 cm2s-1) C0 / 10-6 S /(10-11 Pa-1/2)
Base metal 0.292 3.302 0.02350 4.797
ICHAZ 0.313 4.138 0.02010 4.103
FGHAZ 0.329 4.990 0.01752 3.576
CGHAZ 0.353 5.477 0.01713 3.497
Weld metal 0.333 5.315 0.01665 3.399
表2  焊接接头各区的氢扩散参数
图3  管线3D模型及网格划分
T / ℃ Rt0.5 / MPa E / GPa
20 590 210
400 385 187
500 113 142
600 108 138
700 103 120
800 80 118
900 40 97
1000 27 55
表3  X80钢在不同温度下的力学性能
图4  实际接头与模拟接头的截面形貌
图5  管线焊接残余应力场分布
图6  X80钢焊接接头中的氢浓度分布
Region C0 / 10-6 Cmax / 10-6
Base metal 0.02350 0.02752
ICHAZ 0.02010 0.02675
FGHAZ 0.01752 0.02595
CGHAZ 0.01713 0.02659
Weld metal 0.01665 0.02829
表4  焊接接头各区的氢富集程度
图7  焊缝金属在不同环境下的应力-应变曲线
Environment Rm / MPa δ / % Z / % FH / %
Nitrogen gas 690 16.84 64.21 -
Coal gas 697 14.55 52.12 18.56
Equivalent charging hydrogen 679 14.29 43.18 32.53
表5  焊缝金属在不同环境中的力学性能
图8  不同环境中焊缝区断口形貌的SEM像
[1] Hao X Q, An H Z, Qi H, et al.Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network[J]. Appl. Energy, 2016, 162: 1515
[2] Dodds P E, McDowall W. The future of the UK gas network[J]. Energy Policy, 2013, 60: 305
[3] Nie W J, Shang C J, You Y, et al.Microstructure and toughness of the simulated welding heat affected zone in X100 pipeline steel with high deformation resistance[J]. Acta Metall. Sin., 2012, 48: 797(聂文金, 尚成嘉, 由洋等. 抗变形X100管线钢模拟焊接热影响区的组织与韧性研究[J]. 金属学报, 2012, 48: 797)
[4] Briottet L,Batisse R, de Dinechin G, et al.Recommendations on X80 steel for the design of hydrogen gas transmission pipelines[J]. Int. J. Hydrogen Energy, 2012, 37: 9423
[5] Dodds P E, Demoullin S.Conversion of the UK gas system to transport hydrogen[J]. Int. J. Hydrogen Energy, 2013, 38: 7189
[6] Miao C L, Shang C J, Wang X M, et al.Microstructure and toughness of HAZ in X80 pipeline steel with high Nb content[J]. Acta Metall. Sin., 2010, 46: 541(缪成亮, 尚成嘉, 王学敏等. 高Nb X80管线钢焊接热影响区显微组织与韧性[J]. 金属学报, 2010, 46: 541)
[7] Zhu Z X, Kuzmikova L, Li H J, et al.The effect of chemical composition on microstructure and properties of intercritically reheated coarse-grained heat-affected zone in X70 steels[J]. Metall. Mater. Trans., 2014, 45B: 229
[8] Chen X W, Qiao G Y, Han X L, et al.Effects of Mo, Cr and Nb on microstructure and mechanical properties of heat affected zone for Nb-bearing X80 pipeline steels[J]. Mater. Des., 2014, 53: 888
[9] Sowards J W, Gn?upel-Herold T, McColskey J D, et al. Characterization of mechanical properties, fatigue-crack propagation, and residual stresses in a microalloyed pipeline-steel friction-stir weld[J]. Mater. Des., 2015, 88: 632
[10] Nasim K, Arif A F M, Al-Nassar Y N,D, et al. Investigation of residual stress development in spiral welded pipe[J]. J. Mater. Process. Technol., 2015, 215: 225
[11] Salerno G, Bennett C, Sun W, et al.On the interaction between welding residual stresses: A numerical and experimental investigation[J]. Int. J. Mech. Sci., 2018, 144: 654
[12] Jebaraj J J M, Morrison D J, Suni I I. Hydrogen diffusion coefficients through Inconel 718 in different metallurgical conditions[J]. Corros. Sci., 2014, 80: 517
[13] Rezende M C, Araujo L S, Gabriel S B, et al.Hydrogen embrittlement in nickel-based superalloy 718: Relationship between γ′+γ″ precipitation and the fracture mode[J]. Int. J. Hydrogen Energy, 2015, 40: 17075
[14] Zhang T M, Wang Y, Zhao W M, et al.Hydrogen permeation parameters of X80 steel and welding HAZ under high pressure coal gas environment[J]. Acta Metall. Sin., 2015, 51: 1101(张体明, 王勇, 赵卫民等. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51: 1101)
[15] Zhao W M, Zhang T M, Zhao Y J, et al.Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment[J]. Corros. Sci., 2016, 111: 84
[16] Yan C Y, Liu C Y, Yan B.3D modeling of the hydrogen distribution in X80 pipeline steel welded joints[J]. Comput. Mater. Sci., 2014, 83: 158
[17] Jiang W C, Gong J M, Tang J Q, et al.Finite element simulation of the effect of welding residual stress on hydrogen diffusion[J]. Acta Metall. Sin., 2006, 42: 1221(蒋文春, 巩建鸣, 唐建群等. 焊接残余应力对氢扩散影响的有限元模拟[J]. 金属学报, 2006, 42: 1221)
[18] Chu W Y, Qiao L J, Li J X, et al.Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 37(褚武扬, 乔利杰, 李金许等. 氢脆和应力腐蚀——基础部分 [M]. 北京: 科学出版社, 2013: 37)
[19] Toribio J, Kharin K, Lorenzo M, et al.Role of drawing-induced residual stresses and strains in the hydrogen embrittlement susceptibility of prestressing steels[J]. Corros. Sci., 2011, 53: 3346
[20] Zhang X H, Tan C Y, Chen P Y.Numerical simulation of hydrogen diffusion in welded joint[J]. Trans. China Weld. Inst., 2000, 21(3): 51(张显辉, 谭长瑛, 陈佩寅. 焊接接头氢扩散数值模拟(I)[J]. 焊接学报, 2000, 21(3): 51)
[21] Bell D.Divergence theorems in path space III: Hypoelliptic diffusions and beyond[J]. J. Funct. Anal., 2007, 251: 232
[22] Chu W Y, Qiao L J, Chen Q Z, et al.Fracture and Environmental Fracture [M]. Beijing: Science Press, 2000: 99(褚武扬, 乔利杰, 陈奇志等. 断裂与环境断裂 [M]. 北京: 科学出版社, 2000: 99)
[23] Wang Y F, Gong J M, Jiang W C.A quantitative description on fracture toughness of steels in hydrogen gas[J]. Int. J. Hydrogen Energy, 2013, 38: 12503
[24] Jiang W C, Gong J M, Tang J Q, et al.Numerical simulation of hydrogen diffusion under welding residual stress[J]. Trans. China Weld. Inst., 2006, 27(11): 57(蒋文春, 龚建鸣, 唐建群等. 焊接残余应力下氢扩散的数值模拟[J]. 焊接学报, 2006, 27(11): 57)
[25] Nanninga N E, Levy Y S, Drexler E S, et al.Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments[J]. Corros. Sci., 2012, 59: 1
[26] Kong D J, Wu Y Z, Long D.Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions[J]. J. Iron Steel Res., Int., 2013, 20: 40
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[7] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[8] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[9] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[10] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[11] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[12] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[13] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[14] 李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473.
[15] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.