Please wait a minute...
金属学报  2020, Vol. 56 Issue (2): 137-147    DOI: 10.11900/0412.1961.2019.00237
  研究论文 本期目录 | 过刊浏览 |
X80钢焊接接头在模拟天然气凝析液中的腐蚀行为
陈芳,李亚东,杨剑,唐晓,李焰()
中国石油大学(华东)材料科学与工程学院 青岛 266580
Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions
CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan()
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
全文: PDF(10336 KB)   HTML
摘要: 

通过正交实验设计、失重实验和电化学实验,研究了HAc、Cl-和乙二醇(MEG)浓度以及温度(T)等因素对X80管线钢在CO2饱和的模拟天然气凝析液中腐蚀行为的影响。结果表明,焊接接头形成宏观腐蚀原电池,腐蚀速率明显大于母材,焊缝区作为阳极区腐蚀加速成为焊接接头的薄弱环节;4种因素对腐蚀过程影响的显著程度依次为:c(HAc)>T $\gg$c(Cl-)>c(MEG),c(HAc)与T为影响的主要因子,c(Cl-)与c(MEG)为次要因子。母材和焊缝腐蚀倾向均随着温度的升高而增强;由于Fe(Ac)2作为腐蚀产物保护性较差,随着c(HAc)的升高,母材和焊缝的阻抗降低、腐蚀速率升高。基于正交实验结果,建立了多元线性回归方程。

关键词 X80管线钢焊接接头天然气凝析液腐蚀行为    
Abstract

Carbon steels are widely used as transportation pipelines in oil and gas fields and welding is one of the main ways of connecting pipeline steel. The welded joints are easily corroded due to the difference in composition, structure and properties of the various components. The effect of content of HAc, Cl-, ethylene glycol (MEG) and temperature (T) on the corrosion behavior of welded joint of X80 steel in a simulated natural gas condensate saturated with CO2 was studied by the orthogonal experimental design, weight loss experiment and electrochemical experiment. It is demonstrated that the corrosion rate of the welded joint is significantly higher than that of the base metal because of the formation of macroscopic corrosion galvanic cells, and the corrosion of the weld metal as an anode region is accelerated to become a weak link of the welded joint. The significance of the four factors on the corrosion process is: c(HAc)>T $\gg$c(Cl-)>c(MEG), c(HAc) and T are the main factors affecting the corrosion behavior, and c(Cl-) and c(MEG) are secondary factors. Base metal and weld metal corrosion tendencies increase with increasing temperature. Because ferrous acetate is less protective as a corrosion product, as the c(HAc) increases, the impedance of the base metal and weld metal decreases, and the corrosion rate increases. Based on the results of orthogonal experiments, a multivariate linear regression equation was established.

Key wordsX80 pipeline steel    welded joint    natural gas condensate    corrosion behavior
收稿日期: 2019-07-24     
ZTFLH:  TG172  
基金资助:国家自然科学基金项目(41676071);中央高校基本科研业务费专项资金项目(18CX05021A)
通讯作者: 李焰     E-mail: yanlee@upc.edu.cn
Corresponding author: Yan LI     E-mail: yanlee@upc.edu.cn
作者简介: 陈 芳,女,1993年生,硕士生

引用本文:

陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
Fang CHEN, Yadong LI, Jian YANG, Xiao TANG, Yan LI. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions. Acta Metall Sin, 2020, 56(2): 137-147.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00237      或      https://www.ams.org.cn/CN/Y2020/V56/I2/137

图1  X80钢焊接接头各分区显微组织

No.

Mass fraction / %

T / ℃

Corrosion rate / (g·m-2·h-1)
c(Cl-)c(HAc)c(MEG)
BMWJ
11.000300.4210.547
21.00.1010400.8530.984
31.00.3020501.0001.390
41.00.5030601.5502.190
53.0020400.3250.350
63.00.1030300.2930.500

7

3.00.300601.9402.390
83.00.5010502.0503.530
95.0030500.3150.315
105.00.1020300.9961.170
115.00.3010600.9781.410
125.00.500400.3340.623
137.0010600.6350.725
147.00.100501.1401.550
157.00.3030400.5990.700
167.00.5020300.9201.560
表1  母材区(BM)和焊接接头(WJ)挂片正交实验结果
SpecimenSource of varianceSum of squareDFMean squareF
BMModel2.1521.075.54
Error2.52130.19
Total4.6715
WJModel5.8222.916.77
Error5.58130.43
Total11.415
表2  方程显著性方差分析表
图2  模拟天然气凝析液中X80钢焊接接头BM和WM开路电位(EOCP)随温度的变化
图3  模拟天然气凝析液中X80钢BM和WM在不同温度下的EIS
图4  EIS等效电路图

Specimen

T

Rs

Ω·cm2

Cdl

μF·cm-2

n

Rp

Ω·cm2

RL

Ω·cm2

L

H·cm-2

BM303.15200.84135.0292.0312.4
402.76920.8578.7234.1121.3
502.812200.8424.662.714.1
602.732100.7811.623.62.1
WM304.41640.85304.2
403.82150.84151.4--
503.23090.82110.0--
603.04400.8359.0--
表3  模拟天然气凝析液中X80钢BM和WM在不同温度中的EIS拟合数据
图5  模拟天然气凝析液中X80钢BM和WM在不同温度下的动电位极化曲线
SpecimenT / ℃ba / mVbc / mVicorr / (mA·cm-2)Ecorr / V
BM30401620.111-0.544
40502310.304-0.559
50772760.976-0.575
60832432.562-0.594
WM30891720.058-0.593
40801520.085-0.598
50771810.145-0.597
60731520.246-0.618
表4  模拟天然气凝析液中X80钢BM和WM在不同温度下的动电位极化曲线拟合数据
图6  模拟天然气凝析液中X80钢BM和WM开路电位随HAc浓度的变化
图7  模拟天然气凝析液中X80钢BM和WM在不同HAc浓度溶液中的EIS

Specimen

c(HAc)

%

Rs

Ω·cm2

Cdl

μF·cm-2

n

Rp

Ω·cm2

RL

Ω·cm2

L

H·cm-2

BM04.37650.79181663572
0.104.04730.83172369481
0.304.25550.82152371378
0.503.15250.84136321288
WM04.61240.86510--
0.104.41760.8548832561692
0.304.41640.8530437202620
0.504.96460.79208725910
表5  模拟天然气凝析液中X80钢BM和WM在不同HAc浓度溶液中EIS拟合数据
图8  模拟天然气凝析液中X80钢BM和WM在不同HAc浓度的动电位极化曲线
Specimenc(HAc) / %ba / mVbc / mVicorr / (mA·cm-2)Ecorr / V
BM05810630.0944-0.667
0.10502470.1513-0.572
0.30472030.1469-0.559
0.50401620.1113-0.544
WM0649970.0089-0.685
0.10881860.0355-0.602
0.30851530.0330-0.589
0.50891720.0580-0.593
表6  模拟天然气凝析液中X80钢BM和WM在不同HAc浓度的动电位极化曲线拟合数据
图9  模拟天然气凝析液中X80钢WJ整体挂片的宏观腐蚀形貌
图10  模拟天然气凝析液中X80钢BM和WJ腐蚀速率随温度的变化曲线
图11  模拟天然气凝析液中X80钢BM和WJ腐蚀速率随HAc浓度的变化曲线
[1] Wang S P. Repairing corrosion defects of subsea pipe and the availability of repair method [J]. Oil Gas Storage Transp., 2011, 30: 949
[1] (王诗鹏. 海底管道腐蚀缺陷修复评估方案的确定 [J]. 油气储运, 2011, 30: 949)
[2] Qiao Q, Cheng G X, Wu W, et al. Failure analysis of corrosion at an inhomogeneous welded joint in a natural gas gathering pipeline considering the combined action of multiple factors [J]. Eng. Fail. Anal., 2016, 64: 126
[3] Li Y D, Tang X, Li Y. Research progress of localized corrosion of welded joints [J]. Mater. Rev., 2017, 31(11): 158
[3] (李亚东, 唐 晓, 李 焰. 焊接接头局部腐蚀的研究进展 [J]. 材料导报, 2017, 31(11): 158)
[4] Zhu J Y, Xu L N, Feng Z C, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel [J]. Corros. Sci., 2016, 111: 391
[5] Li Y, Li Y D, Yang R, et al. Reconstruction of X80 pipeline steel welded joints and corrosion behavior in NACE solution [J]. J. China Univ. Pet. (Ed. Nat. Sci.), 2018, 42(6): 153
[5] (李 焰, 李亚东, 杨 瑞等. X80管线钢焊接接头重构及其在NACE溶液中的腐蚀行为 [J]. 中国石油大学学报(自然科学版), 2018, 42(6): 153)
[6] Guo Y L, Ma T X, Liu W Y, et al. Numerical simulation of welding residual stress of X80 pipeline steel based on ABAQUS [J]. Heat Treat. Met., 2018, 43(9): 218
[6] (郭杨柳, 马廷霞, 刘维洋等. 基于ABAQUS的X80管线钢焊接残余应力数值模拟 [J]. 金属热处理, 2018, 43(9): 218)
[7] Zhang G A, Cheng Y F. Micro-electrochemical characterization of corrosion of welded X70 pipeline steel in near-neutral pH solution [J]. Corros. Sci., 2009, 51: 1714
[8] Huang M, Zhang M X, Wang Y, et al. Electrochemical behaviour of X80 pipeline steel with alumina coating [J]. Surf. Eng., 2015, 31(4): 295
[9] Zhao P X, Zuo X R, Chen K, et al. Corrosion behavior of X80 pipeline steel with strain-based design [J]. Trans. Mater. Heat Treat., 2013, 34(Suppl.2): 221
[9] (赵鹏翔, 左秀荣, 陈 康等. X80大变形管线钢的腐蚀行为 [J]. 材料热处理学报, 2013, 34(增刊 2): 221)
[10] Liu Z Y, Wan H X, Li C, et al. Comparative study on corrosion of X65 pipeline steel welded joint in simulated shallow and deep sea [J]. J. Chin. Soc. Corros. Protect., 2014, 34: 321
[10] (刘智勇, 万红霞, 李 禅等. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比 [J]. 中国腐蚀与防护学报, 2014, 34: 321)
[11] Luo J H, Luo S J, Li L F, et al. Stress corrosion cracking behavior of X90 pipeline steel and its weld joint at different applied potentials in near-neutral solutions [J]. Nat. Gas Ind., 2019, 6B: 138
[12] Giorgetti V, Santos E A, Marcomini J B, et al. Stress corrosion cracking and fatigue crack growth of an API 5L X70 welded joint in an ethanol environment [J]. Int. J. Pressure Vessels Piping, 2019, 169: 223
[13] Ma G, Zuo X R, Hong L, et al. Investigation of corrosion behavior of welded joint of X70 pipeline steel for deep sea [J]. Acta Metall. Sin., 2018, 54: 527
[13] (马 歌, 左秀荣, 洪 良等. 深海用X70管线钢焊接接头腐蚀行为研究 [J]. 金属学报, 2018, 54: 527)
[14] Jegdi? B, Bobi? B, Radojkovi? B, et al. Corrosion resistance of welded joints of X5CrNi18-10 stainless steel [J]. J. Mater. Process. Technol., 2019, 266: 579
[15] Alizadeh M, Bordbar S. The influence of microstructure on the protective properties of the corrosion product layer generated on the welded API X70 steel in chloride solution [J]. Corros. Sci., 2013, 70: 170
[16] Zhang X, Zevenbergen J F, Spruijt M P N, et al. Corrosion of pipe steel in CO2 containing impurities and possible solutions [J]. Energy Proced., 2013, 37: 3147
[17] Zhu S D, Fu A Q, Miao J, et al. Corrosion of N80 carbon steel in oil field formation water containing CO2 in the absence and presence of acetic acid [J]. Corros. Sci., 2011, 53: 3156
[18] Asadian M, Sabzi M, Anijdan S H M. The effect of temperature, CO2, H2S gases and the resultant iron carbonate and iron sulfide compounds on the sour corrosion behaviour of ASTM A-106 steel for pipeline transportation [J]. Int. J. Pressure Vessels Piping, 2019, 171: 184
[19] Chen C F, Lu M X, Zhao G X, et al. Effects of temperature, Cl- concentration and Cr on electrode reactions of CO2 corrosion of N80 steel [J]. Acta Metall. Sin., 2003, 39: 848
[19] (陈长风, 路民旭, 赵国仙等. 温度、Cl-浓度、Cr元素对N80钢CO2腐蚀电极过程的影响 [J]. 金属学报, 2003, 39: 848)
[20] das Chagas Almeida T, Bandeira M C E, Moreira R M, et al. New Insights on the role of CO2 in the mechanism of carbon steel corrosion [J]. Corros. Sci., 2017, 120: 239
[21] Keddam M, Mottos O R, Takenouti H. Reaction model for iron dissolution studied by electrode impedance I. Experimental results and reaction model [J]. J. Electrochem. Soc., 1981, 128: 257
[22] Li Y D, Li Q, Tang X, et al. Reconstruction and characterization of galvanic corrosion behavior of X80 pipeline steel welded joints [J]. Acta Metall. Sin., 2019, 55: 801
[22] (李亚东, 李 强, 唐 晓等. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征 [J]. 金属学报, 2019, 55: 801)
[23] Hemmingsen T, Hovdan H, Sanni P, et al. The influence of electrolyte reduction potential on weld corrosion [J]. Electrochim. Acta, 2002, 47: 3949
[24] Huang H H, Tsai W T, Lee J T. Electrochemical behavior of the simulated heat-affected zone of A516 carbon steel in H2S solution [J]. Electrochim. Acta, 1996, 41: 1191
[25] Zhang G A, Cheng Y F. Micro-electrochemical characterization and Mott-Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution [J]. Electrochim. Acta, 2009, 55: 316
[26] Zhang S Z, Cheng Y F, Feng X D, et al. Performance characteristics and technical challenges of X80 pipeline steel [J]. Oil Gas Storage Transp., 2019, 38: 481
[26] (张圣柱, 程玉峰, 冯晓东等. X80管线钢性能特征及技术挑战 [J]. 油气储运, 2019, 38: 481)
[27] Honarvar Nazari M, Allahkaram S R, Kermani M B. The effects of temperature and pH on the characteristics of corrosion product in CO2 corrosion of grade X70 steel [J]. Mater. Des., 2010, 31: 3559
[28] de Waard C, Milliams D E. Carbonic acid corrosion of steel [J]. Corrosion, 1975, 31: 177
[29] Chen C F, Lu M X, Zhao G X, et al. The EIS analysis of electrode reactions of CO2 corrosion of N80 steel [J]. Acta Metall. Sin., 2002, 38: 770
[29] (陈长风, 路民旭, 赵国仙等. N80钢CO2腐蚀电极过程交流阻抗分析 [J]. 金属学报, 2002, 38: 770)
[30] Llongueras J G, Hernandez J, Munoz A, et al. Mechanism of FeCO3 formation on API X70 pipeline steel in brine solutions containing CO2 [A]. Proceedings of CORROSION 2005 [C]. Houston, Texas: NACE International, 2005: 14
[31] Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production—A compendium [J]. Corrosion, 2003, 59: 659
[32] Zhao G X, Yan M L, Lu M X, et al. Advances in research of CO2 corrosion in oil and gas industry [J]. Corros. Protect., 1998, 19(2): 51
[32] (赵国仙, 严密林, 路民旭等. 石油天然气工业中CO2腐蚀的研究进展 [J]. 腐蚀与防护, 1998, 19(2): 51)
[33] Nesic S, Postlethwaite J, Olsen S. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions [J]. Corrosion, 1996, 52: 280
[34] Ne?i? S, Nordsveen M, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 2: A numerical experiment [J]. Corrosion, 2003, 59: 489
[35] Davies D H, Burstein G T. The effects of bicarbonate on the corrosion and passivation of iron [J]. Corrosion, 1980, 36: 416
[36] Ogundele G I, White W E. Some observations on corrosion of carbon steel in aqueous environments containing carbon dioxide [J]. Corrosion, 1986, 42: 71
[37] Tran T, Brown B, Nesic S, et al. Investigation of the mechanism for acetic acid corrosion of mild steel [A]. Proceedings of CORROSION 2013 [C]. Orlando: NACE International, 2013: 12
[38] Zhang Y L, Du M, Zhang J, et al. Corrosion behavior of X65 carbon steel in simulated oilfield produced water [J]. Mater. Corros., 2015, 66: 366
[1] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[2] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[3] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[4] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.
[5] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[6] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[7] 胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.
[8] 张苏强,赵洪运,舒凤远,王国栋,贺文雄. 焊接热循环对Q315NS钢在H2SO4溶液中腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 808-816.
[9] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[10] 赵小宇, 黄峰, 甘丽君, 胡骞, 刘静. MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究[J]. 金属学报, 2017, 53(12): 1579-1587.
[11] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
[12] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[13] 韦天国,林建康,龙冲生,陈洪生. 蒸汽中的溶解氧对锆合金腐蚀行为的影响*[J]. 金属学报, 2016, 52(2): 209-216.
[14] 张体明,王勇,赵卫民,唐秀艳,杜天海,杨敏. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51(9): 1101-1110.
[15] 李坤,单际国,王春旭,田志凌. T250马氏体时效钢激光焊接-时效处理接头的强韧性*[J]. 金属学报, 2015, 51(8): 904-912.