Please wait a minute...
金属学报  2019, Vol. 55 Issue (2): 267-273    DOI: 10.11900/0412.1961.2018.00299
  本期目录 | 过刊浏览 |
TiNi合金B2奥氏体中Ti位Ni诱导的晶格失稳
牛建钢1(), 肖伟2
1 河北大学机械系 保定 071002
2 北京科技大学材料科学与工程学院 北京 100083
The Lattice Instability Induced by Ti-Site Ni in B2 Austenite in TiNi Alloy
Jiangang NIU1(), Wei XIAO2
1 Department of Mechanical Engineering, Hebei University, Baoding 071002, China
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(1874 KB)   HTML
摘要: 

提出了点缺陷扰动策略,并利用此策略证实Ti位Ni实际上引起了B2奥氏体局域晶格失稳。失稳终态相的结构特征是从扰动位出发的一维方向上的<100>B2原子列收缩和<111>B2原子列膨胀。失稳终态相的能量低于B2相,最低能量比B2相低20 meV/atom,在Ti位Ni浓度达到2%~4%时出现。与奥氏体情况相反,Ti位Ni无法令B19′马氏体失稳。Ti位Ni显著降低TiNi合金相变温度的现象一定程度上来源于此。

关键词 TiNi合金晶格失稳第一原理    
Abstract

The shape memory effect exists in the temperature range between martensitic phase transformation temperature and reverse martensitic phase transformation temperature, thus the control of martensitic phase transformation temperature is a key issue for the application of shape memory alloys. Valence electrons have been thought to dominate phase stability and phase transformation temperature in TiNi alloy. Inconsistent with the valence electron theory, Ti-site Ni could lead to a significant decrease of phase transformation temperature in TiNi alloy. To deeply understand the effect of Ti-site Ni, a point-defect-perturbation strategy was proposed to prove that Ti-site Ni indeed induced a local lattice instability in B2 austenite. It is the structural feature of instability final phase that one-dimensional <100>B2 atomic column compression and <111>B2 column expansion from the perturbation site. The final phase is energetic lower than B2 structure, and the lowest energy of final phase is 20 meV/atom lower than B2 structure, when the perturbing Ti-site Ni content reaches 2%~4%. In contrast to the case in austenite, Ti-site Ni did not induce the lattice instability in B19′ martensite. The difference between austenite and martensite is to some extent the origin of the significant decrease of phase transformation temperature brought by Ti-site Ni in TiNi alloy.

Key wordsTiNi alloy    lattice instability    first principle
收稿日期: 2018-07-02     
ZTFLH:  TB31  
基金资助:资助项目 河北省教育厅科研计划项目No.QN2016155以及河北大学人才项目No.801260201071
作者简介:

作者简介 牛建钢,男,1976年生,副教授,博士

引用本文:

牛建钢, 肖伟. TiNi合金B2奥氏体中Ti位Ni诱导的晶格失稳[J]. 金属学报, 2019, 55(2): 267-273.
Jiangang NIU, Wei XIAO. The Lattice Instability Induced by Ti-Site Ni in B2 Austenite in TiNi Alloy. Acta Metall Sin, 2019, 55(2): 267-273.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00299      或      https://www.ams.org.cn/CN/Y2019/V55/I2/267

图1  点缺陷扰动策略示意图
图2  2×2×2的B2超晶胞中简单立方、bcc、fcc Ti位Ni超点阵和2×2×3的B2超晶胞中简单六方Ti位Ni超点阵
图3  2×2×2晶胞中简单立方、bcc、fcc超点阵Ti位Ni和近邻原子的交替分布
图4  失稳终态相与B2相的能量差(ΔEfinal-B2)随Ti位Ni浓度的变化
图5  失稳终态相与B2相在5×5×5晶胞和22×22×3晶胞中的键长差异(ΔLfinal-B2)
图6  畸变结构与B2相的能量差(ΔEdistorted-B2)和失稳终态相与B2相的能量差(ΔEfinal-B2)的对比
图7  畸变结构与失稳终态相之间的键长差异(ΔLdistorted-final)
图8  畸变B19′相结构与B19′相的能量差(ΔEdistorted-B19′)和畸变B2相结构与B2相的能量差(ΔEdistorted-B2)的对比
图9  畸变B2相结构与畸变B19′相结构的能量差(ΔEdistortedB2-distortedB19′)和B2相与B19′相的能量差(ΔEB2-B19′)的对比
[1] Buehler W J, Gilfrich J V, Wiley R C.Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi[J]. J. Appl. Phys., 1963, 34: 1475
[2] Chang L C, Read T A.Plastic deformation and diffusionless phase changes in metals—The gold-cadmium beta phase[J]. JOM, 1951, 3(1): 47
[3] Zarinejad M, Liu Y.Dependence of transformation temperatures of NiTi-based shape-memory alloys on the number and concentration of valence electrons[J]. Adv. Funct. Mater., 2008, 18: 2789
[4] Niu J G, Xiao W, Hao W, et al.The beta-stabilizing effects of 3d metals in Ti: First principles investigation[J]. Rare Met. Mater. Eng., 2016, 45: 137(牛建钢, 肖伟, 郝伟等. 第一原理研究Ti合金中3d合金元素的β稳定效应[J]. 稀有金属材料与工程, 2016, 45: 137)
[5] Huang L F, Grabowski B, Zhang J, et al.From electronic structure to phase diagrams: A bottom-up approach to understand the stability of titanium-transition metal alloys[J]. Acta Mater., 2016, 113: 311
[6] Luke C A, Taggart R, Polonis D H.The metastable constitution of quenched titanium and zirconium-base binary alloys[J]. Trans. Am. Soc. Met., 1964, 57: 142
[7] Fisher E S, Dever D.Relation of the c′ elastic modulus to stability of b.c.c. transition metals[J]. Acta Metall., 1970, 18: 265
[8] Tegner B E, Zhu L G, Ackland G J.Relative strength of phase stabilizers in titanium alloys[J]. Phys. Rev., 2012, 85B: 214106
[9] Wang F E,Buehler W J B,Pickart S J. Crystal structure and a unique "martensitic'' transition of TiNi[J]. J. Appl. Phys., 1965, 36: 3232
[10] Tang W, Sundman B, Sandstr?m R, et al.New modelling of the B2 phase and its associated martensitic transformation in the Ti-Ni system[J]. Acta Mater., 1999, 47: 3457
[11] Frenzel J, George E P, Dlouhy A, et al.Influence of Ni on martensitic phase transformations in NiTi shape memory alloys[J]. Acta Mater., 2010, 58: 3444
[12] Frenzel J, Wieczorek A, Opahle I, et al.On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys[J]. Acta Mater., 2015, 90: 213
[13] Niu J G, Geng W T.Anti-precursor effect of Fe on martensitic transformation in TiNi alloys[J]. Acta Mater., 2016, 104: 18
[14] Clapp P C.A localized soft mode theory for martensitic transformations[J]. Phys. Status. Solidi, 1973, 57B: 561
[15] Zener C.Contributions to the theory of beta-phase alloys[J]. Phys. Rev., 1947, 71B: 846
[16] Mercier O, Melton K N, Gremaud G, et al.Single-crystal elastic constants of the equiatomic NiTi alloy near the martensitic transformation[J]. J. Appl. Phys., 1980, 51: 1833
[17] Niu J G, Geng W T.Oxygen-induced lattice distortion in β-Ti3Nb and its suppression effect on β to α″ transformation[J]. Acta Mater., 2014, 81: 194
[18] Machlin E S, Cohen M.Isothermal mode of the martensitic transformation[J]. JOM, 1952, 4: 489
[19] Philip T V, Beck P A.CsCl-type ordered structures in binary alloys of transition elements[J]. JOM, 1957, 9: 1269
[20] Lu J M, Hu Q M, Wang L, et al.Point defects and their interaction in TiNi from first-principles calculations[J]. Phys. Rev., 2007, 75B: 094108
[21] Kresse G, Furthmüller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev., 1996, 54B: 11169
[22] Kresse G, Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev., 1999, 59B: 1758
[23] Perdew J P, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865
[24] Monkhorst H J, Pack J D.Special points for Brillouin-zone integrations[J]. Phys. Rev., 1976, 13B: 5188
[25] Otsuka K, Ren X B.Recent developments in the research of shape memory alloys[J]. Intermetallics, 1999, 7: 511
[1] 冯宇超, 邢炜伟, 王寿龙, 陈星秋, 李殿中, 李依依. ODS钢中氧化物/铁素体界面捕氢行为的第一原理研究[J]. 金属学报, 2018, 54(2): 325-338.
[2] 平发平,胡青苗,杨锐. 利用第一原理研究合金化对γ-TiAl,抗氧化性能的影响[J]. 金属学报, 2013, 29(4): 385-390.
[3] 杨成功,单际国,任家烈. TiNi形状记忆合金激光焊接焊缝金属相变温度的控制[J]. 金属学报, 2013, 49(2): 199-206.
[4] 毛萍莉,于波,刘正,王峰,鞠阳. Mg-Zn-Ca合金中AB2型金属间化合物电子结构和弹性性质的第一性原理计算[J]. 金属学报, 2013, 49(10): 1227-1233.
[5] 张会 王绍青. Mg-La和Mg-Nd二元合金相稳定性的第一原理研究[J]. 金属学报, 2012, 48(7): 889-894.
[6] 杨成功,单际国,任家烈. TiNi合金激光焊接接头形状恢复温度的研究[J]. 金属学报, 2012, 48(5): 513-518.
[7] 周惦武 刘金水 徐少华 彭平. Al2Sr和Mg2Sr相结构稳定性与弹性性能的第一原理计算[J]. 金属学报, 2011, 47(10): 1315-1320.
[8] 苏振兴 王雨晨 王绍青. Al-Sc合金相结构的第一原理研究[J]. 金属学报, 2010, 46(5): 623-628.
[9] 赵宇飞 符跃春 胡青苗 杨锐. Ti1-xVx及Ti1-xNbx合金晶格参数、体模量及相稳定性的第一原理研究[J]. 金属学报, 2009, 45(9): 1042-1048.
[10] 曾宪波 彭平. α2-Ti-25Al-xNb合金力学性质的第一原理计算[J]. 金属学报, 2009, 45(9): 1049-1056.
[11] 郑斌 周伟 王轶农 齐民. Landau理论研究TiNi顺磁合金热/强磁场耦合下的马氏体相变[J]. 金属学报, 2009, 45(1): 37-42.
[12] 聂耀庄; 谢佑卿; 李小波; 彭红建 . 金属Zr热力学性质的第一原理研究[J]. 金属学报, 2007, 43(7): 693-698 .
[13] 李虹; 刘利民; 王绍青; 叶恒强 . 氧原子在γ-TiAl(111)表面吸附的第一性原理研究[J]. 金属学报, 2006, 42(9): 897-902 .
[14] 张怀征; 刘利民; 王绍青 . IVB和VB过渡族金属碳化物及其表面的结构和电子态的第一原理研究[J]. 金属学报, 2006, 42(5): 554-560 .
[15] 郑雁军; 崔立山 . TiNi合金不完全相变的温度记忆效应[J]. 金属学报, 2004, 40(9): 915-919 .