Please wait a minute...
金属学报  2019, Vol. 55 Issue (2): 223-228    DOI: 10.11900/0412.1961.2018.00386
  本期目录 | 过刊浏览 |
Ru对NiAl[100](010)刃型位错电子结构的影响
陈丽群1, 邱正琛1, 于涛2
1 中南林业科技大学理学院 长沙 410004
2 钢铁研究总院功能材料研究所 北京 100081
Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl
Liqun CHEN1, Zhengchen QIU1, Tao YU2
1 College of Sciences, Central South University of Forestry & Technology, Changsha 410004, China ;
2 Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081, China
引用本文:

陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. Acta Metall Sin, 2019, 55(2): 223-228.

全文: PDF(978 KB)   HTML
摘要: 

利用DMol和离散变分法,研究了Ru在NiAl [100](010)刃型位错中择优占位和合金化效应。杂质偏聚能的计算结果表明,Ru会优先占据Al心位错芯中的Al格位。原子间相互作用能、电荷密度和态密度的分析表明,杂质原子和相邻基体原子之间形成了较强的化学键,使Ru原子与位错芯区近邻基体原子间因强相互作用形成一个整体。此外,在掺杂体系中,穿过滑移面的基体原子间相互作用减弱,而沿滑移方向基体原子间的相互作用加强。这样的成键特性有利于位错线沿滑移面的移动形成扭折,扭折的成核及迁移促使位错运动,从而改善NiAl合金的韧性。

关键词 电子结构位错金属间化合物Ru    
Abstract

NiAl intermetallics have potential application in the aerospace industry as a new high temperature structure material due to its high melting temperature, good thermal conductivity, low density, and good oxidation resistance. However, possible technological applications of NiAl are limited by its poor ductility at low temperatures and brittle grain boundary fracture at elevated temperature. Different methods have been dedicated to manage the brittle behavior of NiAl. Micro-alloying is a effective method. Dislocation is a complicated and widely existing crystal defect. The interaction between dislocation and impurity can greatly influence the mechanical properties of materials. However, the mechanism of interaction between the dislocation and alloying element is not clear. In the work, using the DMol and the discrete variational method within the framework of density functional theory, the site preference and alloying effect of Ru in the [100](010) edge dislocation core (DC) of NiAl are studied. The results of the impurity formation energy show that Ru exhibits a strong Al site preference. The analyses of the interatomic energy, the charge distribution and the partial density of states show that the strong bonding states are formed between the impurity atom and neighboring host atoms. Meanwhile, the bonds keep the atoms in the DC as a whole, which will benefit formation of kink. In addition, in the doped DC system, the interactions between the pair of atoms across the slip plane are weaker, while along the slip direction the interactions are stronger than those in the clean DC system. This bond characters may be in favor of the motion of [100](010) edge dislocation, which will improve the ductility of NiAl.

Key wordselectronic structure    dislocation    intermetallic compounds    Ru
收稿日期: 2018-08-20     
ZTFLH:  TG111.1  
基金资助:资助项目 国家重点研发计划项目No.2017YFB0701503
作者简介:

作者简介 陈丽群,女,1964年生,教授,博士

图1  NiAl中[100](010)刃型位错芯的原子模型示意图(分别用实心圆和空心圆表示沿[001]方向2个相邻平面上的原子,称为平面A和平面B)
Atomic-pair E / eV E′ / eV ΔERu / eV
Atom1-Ni6 -1.35 -1.45 -0.10
Atom1-Ni10 -1.03 -1.32 -0.29
Atom1-Al3 -0.71 -1.44 -0.73
Al2-Al8 -0.25 -0.14 0.11
Al2-Al3 -1.03 -0.82 0.21
Al3-Al4 -1.50 -1.78 -0.28
Ni10-Ni11 -0.93 -1.10 -0.17
表1  掺杂位错体系和纯位错体系中被选定原子对的原子间相互作用能
图2  掺杂位错体系包含杂质原子Ru的(001)原子面差分电荷密度分布 (等高线间隔为0.002e/(a.u)3,失去电荷以及得到电荷分别由虚线以及实线来表示)
图3  纯位错体系和Ru掺杂的掺杂位错体系中杂质原子和其近邻原子的分波态密度(PDOS)曲线 (Fermi能级平移到零,图中阿拉伯数字对应于图1)
[1] Noebe R D, Bowman R R, Nathal M V.The physical and mechanical metallurgy of NiAl [A]. Physical Metallurgy and Processing of Intermetallic Compounds[M]. New York: Chapman & Hall Ltd, 1996: 212
[2] Grabke H J.Oxidation of NiAl and FeAl[J]. Intermetallics, 1999, 7: 1153
[3] Darolia R, Walston W S, Noebe R, et al.Mechanical properties of high purity single crystal NiAl[J]. Intermetallics, 1999, 7: 1195
[4] Dong H X, Jiang Y, He Y H, et al.Formation of porous Ni-Al intermetallics through pressureless reaction synthesis[J]. J. Alloys Compd., 2009, 484: 907
[5] Jiang D T, Guo J T.Preliminary investigation of in-situ multi-phase composite NiAl/Cr (Mo)-TiC[J]. Mater. Lett., 1998, 36: 33
[6] Ishide K, Kainuma R, Ueno N, et al.Ductility enhancement in NiAl (B2)-base alloys by microstructural control[J]. Metall. Trans., 1991, 22A: 441
[7] Wei H, Liang J J, Sun B Z, et al.Comparison of valence-band structures of NiAl alloy containing Cr and Ti: Photoelectron spectrum and first-principles calculations[J]. Intermetallics, 2010, 18: 1062
[8] Zhang J F, Shen J, Shang Z, et al.Microstructure and room temperature fracture toughness of directionally solidified NiAl-Mo eutectic in situ composites[J]. Intermetallics, 2012, 21: 18
[9] Adharapurapu R R, Zhu J, Dheeradhada V S, et al.Effective Hf-Pd Co-doped β-NiAl(Cr) coatings for single-crystal superalloys[J]. Acta Mater., 2014, 76: 449
[10] Sheng L Y, Guo J T, Lai C, et al.Effect of Zr addition on microstructure and mechanical properties of NiAl/Cr(Mo) base eutectic alloy[J]. Acta Metall. Sin., 2015, 51: 828(盛立远, 郭建亭, 赖琛等. Zr添加对NiAl/Cr(Mo)基共晶合金微观组织和力学性能的影响[J]. 金属学报, 2015, 51: 828)
[11] Levit V I, Bul I A, Hu J, et al.High tensile elongation of β-NiAl single crystals at 293K[J]. Scr. Mater., 1996, 34: 1925
[12] Han P, Qi Y H, Guo J T.Microstructure and elevated temperature tensile behavior of directionally solidified Ni-rich NiAl-Mo(Hf) alloy[J]. J. Mater. Sci. Technol., 2011, 27: 437
[13] Wang L, Shen J, Shang Z, et al.Microstructure and mechanical property of directionally solidified NiAl-Cr(Mo)-(Hf, Dy) alloy at different withdrawal rates[J]. Mater. Sci. Eng., 2014, A607: 113
[14] Kontsevoi O Y, Gornostyrev Y N, Freeman A J, et al.Electronic mechanism of impurity-dislocation interactions in intermetallics: NiAl[J]. Philos. Mag. Lett., 2001, 81: 455
[15] Chen L Q, Yu T, Peng X F, et al.The site preference of refractory element W in NiAl dislocation core and its effects on bond characters[J]. Acta Phys. Sin., 2013, 62: 117101(陈丽群, 于涛, 彭小芳等. 难熔元素钨在NiAl位错体系中的占位及对键合性质的影响[J]. 物理学报, 2013, 62: 117101)
[16] Lü B L, Chen G Q, Qu S, et al.Effect of alloying elements on<111> dislocation in NiAl: A first-principles study[J]. Physica, 2013, 417B: 9
[17] Bochenek K, Basista M.Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications[J]. Prog. Aerosp. Sci., 2015, 79: 136
[18] Ning L K, Tong J, Liu E Z, et al.Effect of Ru on the solidification microstructure of a Ni-based single crystal superalloy with high Cr content[J]. Acta Metall. Sin., 2017, 53: 423(宁礼奎, 佟健, 刘恩泽等. Ru对一种高Cr镍基单晶高温合金凝固组织的影响[J]. 金属学报, 2017, 53: 423)
[19] Ponomareva A V, Vekilov Y K, Abrikosov I A.Effect of Re content on elastic properties of B2 NiAl from ab initio calculations[J]. J. Alloys Compd., 2014, 586: S274
[20] Wang Y L, Jones I P, Smallman R E.The effects of iron on the creep properties of NiAl[J]. Intermetallics, 2006, 14: 800
[21] Delley B.An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J. Chem. Phys., 1990, 92: 508
[22] Delley B.Analytic energy derivatives in the numerical local-density-functional approach[J]. J. Chem. Phys., 1991, 94: 7245
[23] Ellis D E, Painter G S.Discrete variational method for the energy-band problem with general crystal potentials[J]. Phys. Rev., 1970, 2B: 2887
[24] Guenzburger D, Ellis D E.Magnetism of Fe impurities in alkaline-earth metals and Al[J]. Phys. Rev., 1992, 45B: 285
[25] Wang C Y, Yue Y, Zeng Y P, et al.Electronic structure of edge dislocation in Iron[J]. Sci. China, 1993, 36A: 1261
[26] Stoloff N S, Koch C C, Liu C T, et al.High-temperature ordered intermetallic alloys II [A]. MRS Symposia Proceeding No.82[C]. Pittsburgh: Materials Research Society, 1987: 175
[27] Balasubramanian M, Pease D M, Budnick J I, et al.Site-occupation tendencies for ternary additions (Fe, Co, Ni) in β-phase transition-metal aluminides[J]. Phys. Rev., 1995, 51B: 8102
[28] Daniel M, Balasubramanian M, Brewe D, et al.Site selectivity and bonding in the β-phase aluminides: Studies of RuAl, PdAl, and Pd and Ru dopants in NiAl[J]. Phys. Rev., 2000, 61B: 6637
[29] Wang C Y.Energetics of metallic defect and electronic structure of doped grain boundary[J]. Acta Metall. Sin., 1997, 33: 54(王崇愚. 金属缺陷能量学基础及掺杂晶界电子结构[J]. 金属学报, 1997, 33: 54)
[30] Wang C Y. Electronic structure of impurity-defect complexes in metals [J]. Defect Diffus. Forum, 1995, 125-126: 79
[1] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[2] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[4] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[5] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[6] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[7] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[8] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[9] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[10] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[11] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[12] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[13] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[14] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[15] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.