|
|
熔体-结晶相固-液界面能的研究进展 |
坚增运( ), 徐涛, 许军锋, 朱满, 常芳娥 |
西安工业大学陕西省光电功能材料与器件重点实验室 西安 710021 |
|
Development of Solid-Liquid Interfacial Energyof Melt-Crystal |
Zengyun JIAN( ), Tao XU, Junfeng XU, Man ZHU, Fang'e CHANG |
Shaanxi Province Key Laboratory of Photoelectric Functional Materials and Devices, Xi'an Technological University, Xi'an 710021, China |
引用本文:
坚增运, 徐涛, 许军锋, 朱满, 常芳娥. 熔体-结晶相固-液界面能的研究进展[J]. 金属学报, 2018, 54(5): 766-772.
Zengyun JIAN,
Tao XU,
Junfeng XU,
Man ZHU,
Fang'e CHANG.
Development of Solid-Liquid Interfacial Energyof Melt-Crystal[J]. Acta Metall Sin, 2018, 54(5): 766-772.
[1] | Turnbull D.Formation of crystal nuclei in liquid metals[J]. J. Appl. Phys., 1950, 21: 1022 | [2] | Asta M, Beckermann C, Karma A, et al.Solidification microstructures and solid-state parallels: Recent developments, future directions[J]. Acta Mater., 2009, 57: 941 | [3] | Kelton K F.Crystal nucleation in liquids and glasses[J]. Solid State Phys., 1991, 45: 75 | [4] | Perepezko J H.Nucleation in undercooled liquids[J]. Mater. Sci. Eng., 1984, 65: 125 | [5] | Hoyt J J, Asta M, Karma A.Atomistic and continuum modeling of dendritic solidification[J]. Mater. Sci. Eng., 2003, R41: 121 | [6] | Wang L L, Lin X, Wang M, et al.Solid-liquid interfacial energy and its anisotropy measurement from double grain boundary grooves[J]. Scr. Metall., 2013, 69: 1 | [7] | Wang L L, Lin X, Wang M, et al.Anisotropic solid-liquid interfacial energy measurement by grain boundary groove method[J]. J. Cryst. Growth, 2014, 406: 85 | [8] | ?ztürk E, Aks?z S, Ke?lio?lu K, et al.The measurement of interfacial energies for solid Sn solution in equilibrium with the Sn-Bi-Ag liquid[J]. Mater. Chem. Phys., 2013, 139: 153 | [9] | Billur C A, Saat?i B.The solid-liquid interfacial energy for solid Zn solution at the eutectic Zn-Sn-Mg ternary alloy[J]. Thermochim. Acta, 2014, 589: 85 | [10] | Son S, Dong H.Measuring solid liquid interfacial energy by grain boundary groove profile method (GBG)[J]. Mater. Today Proc., 2015, 2(suppl.2): S306 | [11] | Kurz W, Fisher D J.Dendrite growth at the limit of stability: Tip radius and spacing[J]. Acta Metall., 1981, 29: 11 | [12] | Lipton J, Kurz W, Trivedi R.Rapid dendrite growth in undercooled alloys[J]. Acta Metall., 1987, 35: 957 | [13] | Kurz W, Trivedi R. Overview No.87 solidification microstructures: Recent developments and future directions[J]. Acta Metall. Mater., 1990, 38: 1 | [14] | Li D, Herlach D M.Direct measurements of free crystal growth in deeply undercooled melts of semiconducting materials[J]. Phys. Rev. Lett., 1996, 77: 1801 | [15] | Jian Z Y, Kuribayashi K, Jie W Q.Critical undercoolings for the transition from the lateral to continuous growth in undercooled silicon and germanium[J]. Acta Mater., 2004, 52: 3323 | [16] | Jian Z Y, Jie W Q.Criterion for judging the homogeneous and heterogeneous nucleation[J]. Metall. Mater. Trans., 2001, 32A: 391 | [17] | Jian Z Y, Chang F E, Ma W H, et al.Nucleation and undercooling of metal melt[J]. Sci. China, 2000, 30E: 9(坚增运, 常芳娥, 马卫红等. 金属熔体的形核和过冷度[J]. 中国科学, 2000, 30E: 9) | [18] | Stiffler S R, Thompson M O, Peercy P S.Supercooling and nucleation of silicon after laser melting[J]. Phys. Rev. Lett., 1988, 60: 2519 | [19] | Lee G W, Cho Y C, Lee B, et al.Interfacial free energy and medium range order: Proof of an inverse of Frank's hypothesis[J]. Phys. Rev., 2017, 95B: 054202 | [20] | Waseda Y, Miller W A.Calculation of the crystal-melt interfacial free energy from experimental radial distribution function data[J]. Trans. Jpn. Inst. Met., 1978, 19: 546 | [21] | Gránásy L, B?rzs?nyi T, Pusztai T.Nucleation and bulk crystallization in binary phase field theory[J]. Phys. Rev. Lett., 2002, 88: 206105 | [22] | Eustathopoulos N, Coudurier L, Joud J C, et al.Tension interfaciale solide-liquide des systémes Al-Sn, Al-In et Al-Sn-In[J]. J. Cryst. Growth, 1976, 33: 105 | [23] | Wenzl H, Fattah A, Uelhoff W.Measurements of the contact angle between melt and crystal during Czochralski growth of copper[J]. J. Cryst. Growth, 1976, 36: 319 | [24] | Gündüz M, Hunt J D.The measurement of solid-liquid surface energies in the Al-Cu, Al-Si and Pb-Sn systems[J]. Acta Metall., 1985, 33: 1651 | [25] | Gündüz M, Hunt J D.Solid-liquid surface energy in the Al-Mg system[J]. Acta Metall., 1988, 37: 1839 | [26] | Mara?li N, Hunt J D.Solid-liquid surface energies in the Al-CuAl2, Al-NiAl3 and Al-Ti systems[J]. Acta Mater., 1996, 44: 1085 | [27] | ?ad?rl? E, B?yük U, Engin S, et al.Experimental investigation of the effect of solidification processing parameters on the rod spacings in the Sn-1.2wt.% Cu alloy[J]. J. Alloys Compd., 2009, 486: 199 | [28] | Broughton J Q, Gilmer G H.Molecular dynamics investigation of the crystal-fluid interface. VI. Excess surface free energies of crystal-liquid systems[J]. J. Chem. Phys., 1986, 84: 5759 | [29] | Spaepen F.A structural model for the solid-liquid interface in monatomic systems[J]. Acta Metall., 1975, 23: 729 | [30] | Spaepen F, Meyer R B.The surface tension in a structural model for the solid-liquid interface[J]. Scr. Metall., 1976, 10: 257 | [31] | Thompson C V.On the approximation of the free energy change on crystallization [D]. Cambridge: Harvard University, 1979 | [32] | Thompson C V, Spaepen F.Homogeneous crystal nucleation in binary metallic melts[J]. Acta Metall., 1983, 31: 2021 | [33] | Nelson R, Spaepen F, Ehrenreich H, et al.Solid State Physics [M]. New York: Academic Press, 1989: 1 | [34] | Jian Z Y, Kuribayashi K, Jie W Q, et al.Solid-liquid interface energy of silicon[J]. Acta Mater., 2006, 54: 3227 | [35] | Jian Z Y, Yang X Q, Chang F E, et al.Solid-liquid interface energy between silicon crystal and silicon-aluminum melt[J]. Metall. Mater. Trans., 2010, 41A: 1826 | [36] | Jian Z Y, Chen J, Chang F E, et al.Crystal-growth transition and homogenous nucleation undercooling of bismuth[J]. Metall. Mater. Trans., 2011, 42A: 3785 | [37] | Jian Z Y, Li N, Zhu M, et al.Temperature dependence of the crystal-melt interfacial energy of metals[J]. Acta Mater., 2012, 60: 3590 | [38] | Jian Z Y, Nagashio K, Kuribayashi K.Direct observation of the crystal-growth transition in undercooled silicon[J]. Metall. Mater. Trans., 2002, 33A: 2947 | [39] | Powell G L F, Colligan G A. Solidification of undercooled Sn-Bi and Pb-Sb alloys[J]. Metall. Trans., 1970, 1: 133 | [40] | Willnecker R, Herlach D M, Feuerbacher B.Nucleation in bulk undercooled nickel-base alloys[J]. Mater. Sci. Eng., 1988, 98: 85 | [41] | Kaldis E, Scheel H J.Current Topics in Materials Science[M]. Amsterdam: North-Holland, 1977: 1 | [42] | Flemings M C, Shiohara Y.Solidification of undercooled metals[J]. Mater. Sci. Eng., 1984, 65: 157 | [43] | Powell G L F. Undercooling in silver-copper eutectic alloys: Nnucleation and microstructure[J]. J. Aust. Inst. Met., 1965, 10: 223 | [44] | Williams P L, Mishin Y, Hamilton J C.An embedded-atom potential for the Cu-Ag system[J]. Modell. Simul. Mater. Sci. Eng., 2006, 14: 817 | [45] | Ackland G J, Tichy G I, Vitek V, et al.Simple N-body potentials for the noble metals and nickel[J]. Philos. Mag., 1987, 56A: 735 | [46] | Adams J B, Foiles S M, Wolfer W G.Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method[J]. J. Mater. Res., 1989, 4: 102 | [47] | Foiles S M.Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method[J]. Phys. Rev., 1985, 32B: 7685 | [48] | Jackson K A.Crystal growth kinetics[J]. Mater. Sci. Eng., 1984, 65: 7 | [49] | Zhou H G, Lin X, Wang M, et al.Calculation of crystal-melt interfacial free energies of fcc metals[J]. J. Cryst. Growth, 2013, 366: 82 | [50] | Cheng B Q, Tribello G A, Ceriotti M.Solid-liquid interfacial free energy out of equilibrium[J]. Phys. Rev., 2015, 92B: 180102 | [51] | Kundin J, Choudhary M A.Numerical determination of the interfacial energy and nucleation barrier of curved solid-liquid interfaces in binary systems[J]. Phys. Rev., 2016, 94E: 012801 | [52] | Brown N T, Martinez E, Qu J M.Interfacial free energy and stiffness of aluminum during rapid solidification[J]. Acta Mater., 2017, 129: 83 | [53] | Qi C, Xu B, Kong L T, et al.Solid-liquid interfacial free energy and its anisotropy in the Cu-Ni binary system investigated by molecular dynamics simulations[J]. J. Alloys Compd., 2017, 708: 1073 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|