Please wait a minute...
金属学报  2018, Vol. 54 Issue (5): 766-772    DOI: 10.11900/0412.1961.2017.00565
  金属材料的凝固专刊 本期目录 | 过刊浏览 |
熔体-结晶相固-液界面能的研究进展
坚增运(), 徐涛, 许军锋, 朱满, 常芳娥
西安工业大学陕西省光电功能材料与器件重点实验室 西安 710021
Development of Solid-Liquid Interfacial Energyof Melt-Crystal
Zengyun JIAN(), Tao XU, Junfeng XU, Man ZHU, Fang'e CHANG
Shaanxi Province Key Laboratory of Photoelectric Functional Materials and Devices, Xi'an Technological University, Xi'an 710021, China
全文: PDF(910 KB)   HTML
摘要: 

结晶相的凝固特性决定其凝固后的组织和性能,要对结晶相凝固特性与过程进行准确表征与有效控制,就必须知道熔体-结晶相固-液界面能的准确数据。本文结合作者长期以来对熔体-结晶相固-液界面能的研究工作,论述了熔体-结晶相固-液界面能实验测定和理论研究方面的相关进展。通过对不同温度下固-液界面能实验测定结果的分析比较,发现熔体-结晶相的固-液界面能随温度的降低而减小;找出了Spaepen固-液界面能模型与实验测定结果不相符的原因;提出基于固-液界面结构的固-液界面能理论模型及用其确定固-液界面能的方法。结果表明,当前模型对固-液界面能的预测结果不仅与熔点温度下实验值和模拟值相吻合,而且也与过冷温度下实验值和模拟值相吻合。

关键词 固-液界面界面能过冷度金属小平面    
Abstract

Solid-liquid interfacial energy (SLIE) plays a crucial role in accurately evaluating solidification characteristics and effectively tuning the solidification process of crystals, which determines the structures and properties of crystals. This paper is based on the investigations of the authors on SLIE of melt-crystal in the past decade, and concentrates on reviewing the recent developments on the experimental and theoretical results of SLIE of melt-crystal. It draws several important conclusions by comparing various experimental results of SLIE under different temperatures. Firstly, the SLIE of melt-crystal decreases with the decrease of temperature. Secondly, the reason for different SLIE respectively obtained by Spaepen model and experimental measurement is revealed. Eventually, a model and method based on the structure of the solid-liquid interface for predicting the SLIE are proposed, and the results provided by this model are in line with the experimental results and the simulated results at the melting temperature, as well as the experimental results and the simulated results of the undercooled state.

Key wordssolid-liquid interface    interfacial energy    undercooling    metal    facet
收稿日期: 2018-01-02     
ZTFLH:  TG111.4  
基金资助:资助项目 国家自然科学基金项目Nos.51371133和51671151
作者简介:

作者简介 坚增运, 男, 1962年生, 教授, 博士

引用本文:

坚增运, 徐涛, 许军锋, 朱满, 常芳娥. 熔体-结晶相固-液界面能的研究进展[J]. 金属学报, 2018, 54(5): 766-772.
Zengyun JIAN, Tao XU, Junfeng XU, Man ZHU, Fang'e CHANG. Development of Solid-Liquid Interfacial Energyof Melt-Crystal. Acta Metall Sin, 2018, 54(5): 766-772.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00565      或      https://www.ams.org.cn/CN/Y2018/V54/I5/766

图1  金属Ag、Cu和Ni的均质形核过冷度ΔTV随V/Rc的变化规律[37]
图2  金属Ag、Cu和Ni的固-液界面能与温度之间的关系[37]
Metal σT / (Jm-2) T / K
Ag σT=3.053×10-4T lnT -2.689×10-7T 2+2.501T -1-1.684×10-3T 300~1300
Cu σT=4.357×10-4T lnT -2.644×10-7T 2-2.583×10-3T 500~1400
Ni σT=2.177×10-3T lnT -2.41×10-6T 2+1.245×102T -1+3.634×10-10T 3-1.298×10-2T 700~1400
σT=1.027×10-4T lnT -5.53×10-4T 1400~1728
表1  Ag、Cu和Ni的固-液界面能随温度的变化规律
图3  由ΔT *和ΔT **所预测的Si的固-液界面能与温度间的关系[34]
图4  由ΔT *和ΔT **所预测的初生Si与Si-Al合金熔体在液相线温度下的固-液界面能[35]
图5  由ΔT *和ΔT **所预测的初生Si与Si-Al合金熔体在850 K下的固-液界面能[35]
[1] Turnbull D.Formation of crystal nuclei in liquid metals[J]. J. Appl. Phys., 1950, 21: 1022
[2] Asta M, Beckermann C, Karma A, et al.Solidification microstructures and solid-state parallels: Recent developments, future directions[J]. Acta Mater., 2009, 57: 941
[3] Kelton K F.Crystal nucleation in liquids and glasses[J]. Solid State Phys., 1991, 45: 75
[4] Perepezko J H.Nucleation in undercooled liquids[J]. Mater. Sci. Eng., 1984, 65: 125
[5] Hoyt J J, Asta M, Karma A.Atomistic and continuum modeling of dendritic solidification[J]. Mater. Sci. Eng., 2003, R41: 121
[6] Wang L L, Lin X, Wang M, et al.Solid-liquid interfacial energy and its anisotropy measurement from double grain boundary grooves[J]. Scr. Metall., 2013, 69: 1
[7] Wang L L, Lin X, Wang M, et al.Anisotropic solid-liquid interfacial energy measurement by grain boundary groove method[J]. J. Cryst. Growth, 2014, 406: 85
[8] ?ztürk E, Aks?z S, Ke?lio?lu K, et al.The measurement of interfacial energies for solid Sn solution in equilibrium with the Sn-Bi-Ag liquid[J]. Mater. Chem. Phys., 2013, 139: 153
[9] Billur C A, Saat?i B.The solid-liquid interfacial energy for solid Zn solution at the eutectic Zn-Sn-Mg ternary alloy[J]. Thermochim. Acta, 2014, 589: 85
[10] Son S, Dong H.Measuring solid liquid interfacial energy by grain boundary groove profile method (GBG)[J]. Mater. Today Proc., 2015, 2(suppl.2): S306
[11] Kurz W, Fisher D J.Dendrite growth at the limit of stability: Tip radius and spacing[J]. Acta Metall., 1981, 29: 11
[12] Lipton J, Kurz W, Trivedi R.Rapid dendrite growth in undercooled alloys[J]. Acta Metall., 1987, 35: 957
[13] Kurz W, Trivedi R. Overview No.87 solidification microstructures: Recent developments and future directions[J]. Acta Metall. Mater., 1990, 38: 1
[14] Li D, Herlach D M.Direct measurements of free crystal growth in deeply undercooled melts of semiconducting materials[J]. Phys. Rev. Lett., 1996, 77: 1801
[15] Jian Z Y, Kuribayashi K, Jie W Q.Critical undercoolings for the transition from the lateral to continuous growth in undercooled silicon and germanium[J]. Acta Mater., 2004, 52: 3323
[16] Jian Z Y, Jie W Q.Criterion for judging the homogeneous and heterogeneous nucleation[J]. Metall. Mater. Trans., 2001, 32A: 391
[17] Jian Z Y, Chang F E, Ma W H, et al.Nucleation and undercooling of metal melt[J]. Sci. China, 2000, 30E: 9(坚增运, 常芳娥, 马卫红等. 金属熔体的形核和过冷度[J]. 中国科学, 2000, 30E: 9)
[18] Stiffler S R, Thompson M O, Peercy P S.Supercooling and nucleation of silicon after laser melting[J]. Phys. Rev. Lett., 1988, 60: 2519
[19] Lee G W, Cho Y C, Lee B, et al.Interfacial free energy and medium range order: Proof of an inverse of Frank's hypothesis[J]. Phys. Rev., 2017, 95B: 054202
[20] Waseda Y, Miller W A.Calculation of the crystal-melt interfacial free energy from experimental radial distribution function data[J]. Trans. Jpn. Inst. Met., 1978, 19: 546
[21] Gránásy L, B?rzs?nyi T, Pusztai T.Nucleation and bulk crystallization in binary phase field theory[J]. Phys. Rev. Lett., 2002, 88: 206105
[22] Eustathopoulos N, Coudurier L, Joud J C, et al.Tension interfaciale solide-liquide des systémes Al-Sn, Al-In et Al-Sn-In[J]. J. Cryst. Growth, 1976, 33: 105
[23] Wenzl H, Fattah A, Uelhoff W.Measurements of the contact angle between melt and crystal during Czochralski growth of copper[J]. J. Cryst. Growth, 1976, 36: 319
[24] Gündüz M, Hunt J D.The measurement of solid-liquid surface energies in the Al-Cu, Al-Si and Pb-Sn systems[J]. Acta Metall., 1985, 33: 1651
[25] Gündüz M, Hunt J D.Solid-liquid surface energy in the Al-Mg system[J]. Acta Metall., 1988, 37: 1839
[26] Mara?li N, Hunt J D.Solid-liquid surface energies in the Al-CuAl2, Al-NiAl3 and Al-Ti systems[J]. Acta Mater., 1996, 44: 1085
[27] ?ad?rl? E, B?yük U, Engin S, et al.Experimental investigation of the effect of solidification processing parameters on the rod spacings in the Sn-1.2wt.% Cu alloy[J]. J. Alloys Compd., 2009, 486: 199
[28] Broughton J Q, Gilmer G H.Molecular dynamics investigation of the crystal-fluid interface. VI. Excess surface free energies of crystal-liquid systems[J]. J. Chem. Phys., 1986, 84: 5759
[29] Spaepen F.A structural model for the solid-liquid interface in monatomic systems[J]. Acta Metall., 1975, 23: 729
[30] Spaepen F, Meyer R B.The surface tension in a structural model for the solid-liquid interface[J]. Scr. Metall., 1976, 10: 257
[31] Thompson C V.On the approximation of the free energy change on crystallization [D]. Cambridge: Harvard University, 1979
[32] Thompson C V, Spaepen F.Homogeneous crystal nucleation in binary metallic melts[J]. Acta Metall., 1983, 31: 2021
[33] Nelson R, Spaepen F, Ehrenreich H, et al.Solid State Physics [M]. New York: Academic Press, 1989: 1
[34] Jian Z Y, Kuribayashi K, Jie W Q, et al.Solid-liquid interface energy of silicon[J]. Acta Mater., 2006, 54: 3227
[35] Jian Z Y, Yang X Q, Chang F E, et al.Solid-liquid interface energy between silicon crystal and silicon-aluminum melt[J]. Metall. Mater. Trans., 2010, 41A: 1826
[36] Jian Z Y, Chen J, Chang F E, et al.Crystal-growth transition and homogenous nucleation undercooling of bismuth[J]. Metall. Mater. Trans., 2011, 42A: 3785
[37] Jian Z Y, Li N, Zhu M, et al.Temperature dependence of the crystal-melt interfacial energy of metals[J]. Acta Mater., 2012, 60: 3590
[38] Jian Z Y, Nagashio K, Kuribayashi K.Direct observation of the crystal-growth transition in undercooled silicon[J]. Metall. Mater. Trans., 2002, 33A: 2947
[39] Powell G L F, Colligan G A. Solidification of undercooled Sn-Bi and Pb-Sb alloys[J]. Metall. Trans., 1970, 1: 133
[40] Willnecker R, Herlach D M, Feuerbacher B.Nucleation in bulk undercooled nickel-base alloys[J]. Mater. Sci. Eng., 1988, 98: 85
[41] Kaldis E, Scheel H J.Current Topics in Materials Science[M]. Amsterdam: North-Holland, 1977: 1
[42] Flemings M C, Shiohara Y.Solidification of undercooled metals[J]. Mater. Sci. Eng., 1984, 65: 157
[43] Powell G L F. Undercooling in silver-copper eutectic alloys: Nnucleation and microstructure[J]. J. Aust. Inst. Met., 1965, 10: 223
[44] Williams P L, Mishin Y, Hamilton J C.An embedded-atom potential for the Cu-Ag system[J]. Modell. Simul. Mater. Sci. Eng., 2006, 14: 817
[45] Ackland G J, Tichy G I, Vitek V, et al.Simple N-body potentials for the noble metals and nickel[J]. Philos. Mag., 1987, 56A: 735
[46] Adams J B, Foiles S M, Wolfer W G.Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method[J]. J. Mater. Res., 1989, 4: 102
[47] Foiles S M.Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method[J]. Phys. Rev., 1985, 32B: 7685
[48] Jackson K A.Crystal growth kinetics[J]. Mater. Sci. Eng., 1984, 65: 7
[49] Zhou H G, Lin X, Wang M, et al.Calculation of crystal-melt interfacial free energies of fcc metals[J]. J. Cryst. Growth, 2013, 366: 82
[50] Cheng B Q, Tribello G A, Ceriotti M.Solid-liquid interfacial free energy out of equilibrium[J]. Phys. Rev., 2015, 92B: 180102
[51] Kundin J, Choudhary M A.Numerical determination of the interfacial energy and nucleation barrier of curved solid-liquid interfaces in binary systems[J]. Phys. Rev., 2016, 94E: 012801
[52] Brown N T, Martinez E, Qu J M.Interfacial free energy and stiffness of aluminum during rapid solidification[J]. Acta Mater., 2017, 129: 83
[53] Qi C, Xu B, Kong L T, et al.Solid-liquid interfacial free energy and its anisotropy in the Cu-Ni binary system investigated by molecular dynamics simulations[J]. J. Alloys Compd., 2017, 708: 1073
[1] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[4] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[5] 王祖敏,张安,陈媛媛,黄远,王江涌. 金属诱导晶化基础与应用研究进展[J]. 金属学报, 2020, 56(1): 66-82.
[6] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[7] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[8] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[9] 曹梦薇,蔡桃,张霞. Fe-BTC表面氨基化及对染料和重金属离子的吸附性能研究[J]. 金属学报, 2019, 55(7): 821-830.
[10] 陈斌,何杰,孙小钧,赵九洲,江鸿翔,张丽丽,郝红日. Fe-Cu-Pb合金液-液相分离及废旧电路板混合金属分级分离与回收[J]. 金属学报, 2019, 55(6): 751-761.
[11] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[12] 丁健翔,田无边,汪丹丹,张培根,陈坚,孙正明. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理[J]. 金属学报, 2019, 55(5): 627-637.
[13] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[14] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[15] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.