Please wait a minute...
金属学报  2018, Vol. 54 Issue (7): 1051-1058    DOI: 10.11900/0412.1961.2017.00411
  本期目录 | 过刊浏览 |
基于微观结构的多晶Cu纳米压痕表面缺陷研究
赵鹏越1,2, 郭永博1(), 白清顺1, 张飞虎1
1 哈尔滨工业大学精密工程研究所 哈尔滨 150001
2 哈尔滨工业大学机器人技术与系统国家重点实验室 哈尔滨 150001
Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures
Pengyue ZHAO1,2, Yongbo GUO1(), Qingshun BAI1, Feihu ZHANG1
1 Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China
2 State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
引用本文:

赵鹏越, 郭永博, 白清顺, 张飞虎. 基于微观结构的多晶Cu纳米压痕表面缺陷研究[J]. 金属学报, 2018, 54(7): 1051-1058.
Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. Acta Metall Sin, 2018, 54(7): 1051-1058.

全文: PDF(5128 KB)   HTML
摘要: 

基于多晶材料的微观拓扑结构,从多晶Cu纳米压痕中晶粒内部、晶界面、三叉晶界和顶点团等4类微观结构与缺陷结构的配位数、内应力、原子势能等方面,研究了压痕表面位错缺陷的演化机制。结果表明:当高维数的微观结构承载压应力时,与其邻近的低维数微观结构表现为拉应力,且更低维数的微观结构(顶点团)更易表现为拉应力;位错缺陷形核时其原子具有较高的内应力与原子势能,扩展时其边缘的不完全位错原子内应力高于内部堆垛层错原子内应力;位错形核与扩展和内应力的累积与释放具有相似的方向性,首先扩展至低维数的顶点团、三叉晶界,而后传递至高维数的晶界面并止于晶界面。

关键词 多晶Cu微观拓扑结构纳米压痕分子动力学    
Abstract

In the present technology, the manufacture of micro-electro-mechanical system (MEMS) and nano-electro-mechanical system (NEMS) are limited by the lack of mechanism of material processing, especially the mechanism of the polycrystalline materials. In this work, based on the microstructures of polycrystalline copper, the evolution mechanism of dislocations on the polycrystalline copper nanoindentation surface is researched by the four types of microstructures in polycrystalline materials, including grain cell, grain boundary, triple junction and vertex points. In addition, the coordination number, internal stress and atomic potential energy of the dislocations defects are also considered. The results show that when the microstructures with high dimension number carry the compressive stress, the adjacent microstructures with low dimension number appear tensile stress and the microstructures with lower dimension number like vertex points is more likely to appear tensile stress. The dislocation atoms accumulate high internal stress and atomic potential energy during the dislocation nucleation. The internal stress of the imperfect dislocation atoms at the dislocation edge is higher than that of the stacking layer atoms inside the dislocations during the dislocation growth. The process of nucleation and growth, and the internal stress accumulation and release both have similar directionality. They both firstly extended to the microstructures with lower dimension number like vertex points and triple junction, and then expend to and stop at the grain boundary with high dimension number.

Key wordspolycrystalline copper    microstructure    nanoindentation    molecular dynamics
收稿日期: 2017-09-26     
ZTFLH:  TG301  
基金资助:国家青年科学基金项目No.51405111和国家自然科学基金重点项目No.51535003
作者简介:

作者简介 赵鹏越,男,1992年生,博士生

图1  多晶Cu纳米压痕分子动力学模拟模型
图2  多晶Cu纳米压痕力-压痕深度曲线
图3  晶粒内缺陷形核与扩展过程
图4  不同压痕深度晶粒内部静应力分布
图5  不同压痕深度晶粒内部第三应力分布
图6  缺陷演生过程中内应力及能量分布
图7  晶粒微观结构的原子平均CSP-压痕深度曲线
图8  晶粒微观结构的静应力-压痕深度曲线
[1] Zhang J J, Sun T, Yan Y D, et al.Molecular dynamics modeling of probe-based nanoscratching on crystalline copper[J]. Chin. Mech. Eng., 2012, 23: 967(张俊杰, 孙涛, 闫永达等. 晶体铜微探针纳米刻划的分子动力学建模[J]. 中国机械工程, 2012, 23: 967)
[2] Jang H, Farkas D.Interaction of lattice dislocations with a grain boundary during nanoindentation simulation[J]. Mater. Lett., 2007, 61: 868
[3] Xu T, Sarkar S, Li M, et al.Quantifying microstructures in isotropic grain growth from phase field modeling: Methods[J]. Acta Mater., 2012, 60: 4787
[4] Xu T, Sarkar S, Li M, et al.Quantifying microstructures in isotropic grain growth from phase field modeling: Topological properties[J]. Acta Mater., 2013, 61: 2450
[5] Yang B, Zheng B L, Hu X J, et al.Effect of void on nanoindentation process of Ni-based single crystal alloy[J]. Acta Metall. Sin., 2016, 52: 129(杨彪, 郑百林, 胡兴健等. 空洞对镍基单晶合金纳米压痕过程的影响[J]. 金属学报, 2016, 52: 129)
[6] Zhang K, Weertman J R, Eastman J A.The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper[J]. Appl. Phys. Lett., 2004, 85: 5197
[7] Saraev D, Miller R E.Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings[J]. Acta Mater., 2006, 54: 33
[8] Casals O, O?ená?ek J, Alcalá J.Crystal plasticity finite element simulations of pyramidal indentation in copper single crystals[J]. Acta Mater., 2007, 55: 55
[9] Li Q K, Zhang Y, Chu W Y.Molecular dynamics simulation of plastic deformation during nanoindentation[J]. Acta Metall. Sin., 2004, 40: 1238(李启楷, 张跃, 褚武扬. 纳米压痕形变过程的分子动力学模拟[J]. 金属学报, 2004, 40: 1238)
[10] Wang H L, Wang X X, Wang Y, et al.Atomistic simulation of stress-induced crystallization behavior during the indentation process for amorphous Cu[J]. Acta Metall. Sin., 2007, 43: 259(王海龙, 王秀喜, 王宇等. 压痕过程中非晶Cu形变诱导晶化行为的原子模拟[J]. 金属学报, 2007, 43: 259)
[11] Leng Y S, Yang G P, Hu Y Z, et al.Computer experiments on nano-indentation: A molecular dynamics approach to the elasto-plastic contact of metal copper[J]. J. Mater. Sci., 2000, 35: 2061
[12] Shen B, Sun F H.Molecular dynamics investigation on the atomic-scale indentation and friction behaviors between diamond tips and copper substrate[J]. Diam. Relat. Mater., 2010, 19: 723
[13] Lin Y H, Chen T C.A molecular dynamics study of phase transformations in mono-crystalline Si under nanoindentation[J]. Appl. Phys., 2008, 92A: 571
[14] Saraev D, Miller R E.Atomistic simulation of nanoindentation into copper multilayers[J]. Modell. Simul. Mater. Sci. Eng., 2005, 13: 1089
[15] Szlufarska I.Atomistic simulations of nanoindentation[J]. Mater. Today, 2006, 9(5): 42
[16] Yaghoobi M, Voyiadjis G Z.Effect of boundary conditions on the MD simulation of nanoindentation[J]. Comput. Mater. Sci., 2014, 95: 626
[17] Christopher D, Smith R, Richter A.Atomistic modelling of nanoindentation in iron and silver[J]. Nanotechnology, 2001, 12: 372
[18] Liang H Y, Woo C H, Huang H C, et al.Crystalline plasticity on copper (001), (110), and (111) surfaces during nanoindentation[J]. Comput. Modell. Eng. Sci., 2004, 6: 105
[19] Huang C C, Chiang T C, Fang T H.Grain size effect on indentation of nanocrystalline copper[J]. Appl. Surf. Sci., 2015, 353: 494
[20] Zhu T, Li J, Van Vliet K J, et al. Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper[J]. J. Mech. Phys. Solids, 2004, 52: 691
[21] Ma X L, Yang W.Molecular dynamics simulation on burst and arrest of stacking faults in nanocrystalline Cu under nanoindentation[J]. Nanotechnology, 2003, 14: 1208
[22] Carpio P, Rayón E, Paw?owski L, et al.Microstructure and indentation mechanical properties of YSZ nanostructured coatings obtained by suspension plasma spraying[J]. Surf. Coat. Technol., 2013, 220: 237
[23] Guo Y B, Xu T, Li M.Generalized type III internal stress from interfaces, triple junctions and other microstructural components in nanocrystalline materials[J]. Acta Mater., 2013, 61: 4974
[24] Guo Y B, Xu T, Li M.Hierarchical dislocation nucleation controlled by internal stress in nanocrystalline copper[J]. Appl. Phys. Lett., 2013, 102: 241910
[25] Guo Y B, Xu T, Li M.Atomistic calculation of internal stress in nanoscale polycrystalline materials[J]. Philos. Mag., 2012, 92: 3064
[26] Liu C L.Energetics of diffusion processes during nucleation and growth for the Cu/Cu(100) system[J]. Surf. Sci., 1994, 316: 294
[27] Pei Q X, Lu C, Fang F Z, et al.Nanometric cutting of copper: A molecular dynamics study[J]. Comput. Mater. Sci., 2006, 37: 434
[28] Zhang F, Liu Z, Zhou J Q.Molecular dynamics simulation of micro-mechanical deformations in polycrystalline copper with bimodal structures[J]. Mater. Lett., 2016, 183: 261
[29] Goel S, Haque Faisal N, Luo X C, et al.Nanoindentation of polysilicon and single crystal silicon: Molecular dynamics simulation and experimental validation[J]. J. Phys., 2014, 47D: 275304
[30] Sansoz F, Stevenson K D.Relationship between hardness and dislocation processes in a nanocrystalline metal at the atomic scale[J]. Phys. Rev., 2011, 83B: 224101
[31] Tucker G J, Foiles S M.Molecular dynamics simulations of rate-dependent grain growth during the surface indentation of nanocrystalline nickel[J]. Mater. Sci. Eng., 2013, A571: 207
[32] Sichani M M, Spearot D E.A molecular dynamics study of the role of grain size and orientation on compression of nanocrystalline Cu during shock[J]. Comput. Mater. Sci., 2015, 108: 226
[33] Gao Y, Ruestes C J, Tramontina D R, et al.Comparative simulation study of the structure of the plastic zone produced by nanoindentation[J]. J. Mech. Phys. Solids., 2015, 75: 58
[34] Jiao S S, Tu W J, Zhang P G, et al.Atomistic insights into the prismatic dislocation loop on Al (100) during nanoindentation investigated by molecular dynamics[J]. Comput. Mater. Sci., 2018, 143: 384
[35] Li J, Guo J W, Luo H, et al.Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations[J]. Appl. Surf. Sci., 2016, 364: 190
[36] Yaghoobi M, Voyiadjis G Z.Atomistic simulation of size effects in single-crystalline metals of confined volumes during nanoindentation[J]. Comput. Mater. Sci., 2016, 111: 64
[37] Tschopp M A, McDowell D L. Grain boundary dislocation sources in nanocrystalline copper[J]. Scr. Mater., 2008, 58: 299
[1] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[2] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[3] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[4] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[5] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[6] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[7] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[8] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[9] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[10] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[11] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[12] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[13] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[14] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[15] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.