Please wait a minute...
金属学报  2018, Vol. 54 Issue (1): 55-64    DOI: 10.11900/0412.1961.2017.00291
  本期目录 | 过刊浏览 |
含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响
秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴()
太原科技大学材料科学与工程学院 太原 030024
Effect of Nitrogen Content on Precipitation Behavior and Mechanical Properties of Mn18Cr18NAustenitic Stainless Steel
Fengming QIN, Yajie LI, Xiaodong ZHAO, Wenwu HE, Huiqin CHEN()
School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
引用本文:

秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响[J]. 金属学报, 2018, 54(1): 55-64.
Fengming QIN, Yajie LI, Xiaodong ZHAO, Wenwu HE, Huiqin CHEN. Effect of Nitrogen Content on Precipitation Behavior and Mechanical Properties of Mn18Cr18NAustenitic Stainless Steel[J]. Acta Metall Sin, 2018, 54(1): 55-64.

全文: PDF(1226 KB)   HTML
摘要: 

采用JmatPro软件、OM、SEM和TEM等方法研究了不同含N量的Mn18Cr18N奥氏体不锈钢的析出行为及其对力学性能的影响。结果表明:析出物主要为六方结构的Cr2N和少量M23C6,其中氮化物Cr2N优先沿着晶界析出,随后以不连续胞状方式向奥氏体晶粒内部生长。随着N含量的增加,Cr2N氮化物的析出变得更加敏感,当N含量为0.7%时,Cr2N氮化物的最敏感析出温度为750 ℃,孕育期仅为10 min;而碳化物M23C6主要以颗粒状形式形成在奥氏体晶界上,与相邻的奥氏体晶粒保持相同的位向关系。力学性能测试结果表明,Cr2N氮化物的析出对Mn18Cr18N奥氏体不锈钢的强度有较小的影响,但对于塑性却有强烈的恶化作用。时效后Cr2N的析出导致伸长率和断面收缩率明显降低,伸长率从52.9%降低到27.7%,断裂模式也随着Cr2N氮化物数量的增加从韧性断裂转变为脆性的沿晶断裂和穿晶断裂。TEM分析表明,固溶态试样在拉伸变形过程中通过滑移和孪生方式协调变形,呈现了良好的塑性变形能力。而时效后,位错通过滑移和繁殖最终堆积在Cr2N片层之间和颗粒状M23C6周围,降低了Mn18Cr18N奥氏体不锈钢的塑性变形能力。

关键词 Mn18Cr18N奥氏体不锈钢析出行为显微组织力学性能    
Abstract

Mn18Cr18N austenitic stainless steel with excellent mechanical properties and corrosion resistance is widely used in nuclear industries, power plants and medicine field. However, precipitation of the second phases during hot deformation deteriorates the mechanical properties and hot formability. In order to clarify the precipitation behavior of this steel, the precipitation behavior and its influence on mechanical properties of Mn18Cr18N austenitic stainless steel with different nitrogen contents were investigated by JmatPro software, OM, SEM and TEM analytical methods. The results indicate that precipitation phases consist of Cr2N and a few M23C6, in which Cr2N preferentially precipitates along grain bound aries and then grows up to the interior of austenite grain by discontinuous cellular. With increasing of ageing temperature, the precipitation of Cr2N became more sensitive. When the nitrogen content increases to 0.7%, the most sensitive precipitation temperature of Cr2N is 750 ℃ with an incubation period of 10 min. However, M23C6 mainly precipitates by granular at austenitic grain boundaries and maintains cube-on-cube orientation relationship with adjacent austenite grain. The results of mechanical property test indicate that the precipitation of Cr2N has a negligible effect on strength and obvious deterioration on plasticity of Mn18Cr18N austenitic stainless steel. The precipitation of Cr2N after ageing treatment leads to remarkable decrease in elongation and reduction of area, and the elongation reduced from 52.9% to 27.7%. Meanwhile, fracture mode also transformed from ductile fracture to intergranular fracture and transgranular fracture with the increasing of Cr2N. TEM analysis shows that solution treatment sample reveals good plastic deformation ability and coordinates deformation by slip and twinning, simultaneously. Nevertheless, dislocations slipped, propagated and eventually piled up between lamellas of Cr2N and around granular M23C6 after ageing treatment, which induce the degeneration of the plastic deformation capacity of Mn18Cr18N austenitic stainless steel.

Key wordsMn18Cr18N austenitic stainless steel    precipitation behavior    microstructure    mechanical property
收稿日期: 2017-07-12     
ZTFLH:  TG142.71  
基金资助:国家自然科学基金项目No.51575372,山西省自然科学基金项目No.2014011015-4和山西省科技攻关计划(工业)项目No.201603D121006-2
作者简介:

作者简介 秦凤明,女,1988年生,博士

图1  拉伸试样示意图
图2  不同含N量Mn18Cr18N钢的相图
图3  不同含N量的Mn18Cr18N钢的等温转变曲线
图4  Mn18Cr18N钢在不同条件下时效后的金相组织
图5  Mn18Cr18N钢在750 ℃时效8 h后的沉淀相SEM像
图6  Mn18Cr18N0.7钢在750 ℃时效24 h后沉淀相的TEM像和EDS分析
图7  Mn18Cr18N钢的拉伸应力-应变曲线
图8  不同N含量Mn18Cr18N拉伸试样的断口SEM像
图9  Mn18Cr18N0.7 钢拉伸试样断口的显微组织
图10  固溶态和时效态Mn18Cr18N0.7钢拉伸试样断口附近的TEM像
[1] Xu M Z, Wang J J, Liu C M.Low temperature deformation behavior of high-nitrogen nickel-free austenitic stainless steels[J]. Acta Metall. Sin., 2011, 47: 1335(徐明舟, 王建军, 刘春明. 新型无Ni高N奥氏体不锈钢的低温变形行为[J]. 金属学报, 2011, 47: 1335)
[2] Knutsen R D, Lang C I, Basson J A.Discontinuous cellular precipitation in a Cr-Mn-N steel with niobium and vanadium additions[J]. Acta Mater., 2004, 52: 2407
[3] He W W, Liu J S, Guo Y F, et al.Grain growth behavior of Mn18Cr18N retaining ring steel during multi-heating hot forging process[J]. Mater. Mech. Eng., 2010, 34(7): 20(何文武, 刘建生, 郭银芳等. Mn18Cr18N护环钢多火次热锻过程中晶粒的长大规律[J]. 机械工程材料, 2010, 34(7): 20)
[4] Shi F, Qi Y, Liu C M.Effects of Mo on the precipitation behaviors in high-nitrogen austenitic stainless steels[J]. J. Mater. Sci. Technol., 2011, 27: 1125
[5] Shi F, Wang L J, Cui W F, et al.Precipitation kinetics of Cr2N in high nitrogen austenitic stainless steel[J]. J. Iron Steel Res. Int., 2008, 15(6): 72
[6] Lee T H, Kim S J, Jung Y C.Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900 ℃[J]. Metall. Mater. Trans., 2000, 31A: 1713
[7] Wasnik D N, Dey G K, Kain V, et al.Precipitation stages in a 316L austenitic stainless steel[J]. Scr. Mater., 2003, 49: 135
[8] Padilha A F, Escriba D M, Materna-Morris E, et al.Precipitation in AISI 316L (N) during creep tests at 550 and 600 ℃ up to 10 years[J]. J. Nucl. Mater., 2007, 362: 132
[9] Terada M, Saiki M, Costa I, et al.Microstructure and intergranular corrosion of the austenitic stainless steel 1.4970[J]. J. Nucl. Mater., 2006, 358: 40
[10] Voice W E, Faulkner R G.The discontinuous precipitation of M23C6 in Nimonic 80A[J]. J. Mater. Sci., 1987, 22: 4221
[11] Hong H U, Rho B S, Nam S W.Correlation of the M23C6 precipitation morphology with grain boundary characteristics in austenitic stainless steel[J]. Mater. Sci. Eng., 2001, A318: 285
[12] Lee T H, Oh C S, Lee C G, et al.Precipitation characteristics of the second phases in high-nitrogen austenitic 18Cr-18Mn-2Mo-0.9N steel during isothermal aging[J]. Met. Mater. Int., 2004, 10: 231
[13] Kikuchi M, Kajihara M, Choi S K.Cellular precipitation involving both substitutional and interstitial solutes: Cellular precipitation of Cr2N in Cr-Ni austenitic steels[J]. Mater. Sci. Eng., 1991, A146: 131
[14] Li H B, Jiang J H, Feng H, et al.Aging precipitation behavior of 18Cr-16Mn-2Mo-1.1N high nitrogen austenitic stainless steel and its influences on mechanical properties[J]. J. Iron Steel Res. Int., 2012, 19(8): 43
[15] Vanderschaeve F, Taillard R, Foct J.Discontinuous precipitation of Cr2N in a high nitrogen, chromium-manganese austenitic stainless steel[J]. J. Mater. Sci., 1995, 30: 6035
[16] Srinivas N C S, Kutumbarao V V. On the discontinuous precipitation of Cr2N in Cr-Mn-N austenitic stainless steels[J]. Scr. Mater., 1997, 37: 285
[17] Shi F, Wang L J, Cui W F, et al.Precipitation behavior of M2N in a high-nitrogen austenitic stainless steel during isothermal aging[J]. Acta Metall. Sin.(Engl. Lett.), 2007, 20: 95
[18] Lee T H, Ha H Y, Kim S J.Precipitation of second phases in high-interstitial-alloyed austenitic steel[J]. Metall. Mater. Trans., 2011, 42A: 3543
[19] Kartik B, Veerababu R, Sundararaman M, et al.Effect of high temperature ageing on microstructure and mechanical properties of a nickel-free high nitrogen austenitic stainless steel[J]. Mater. Sci. Eng., 2015, 642: 288
[20] Lee T H, Kim S J, Takaki S.Time-temperature-precipitation characteristics of high-nitrogen austenitic Fe-18Cr-18Mn-2Mo-0.9N steel[J]. Metall. Mater. Trans., 2006, 37A: 3445
[21] Qin F M, Zhu H, Wang Z X, et al.Dislocation and twinning mechanisms for dynamic recrystallization of as-cast Mn18Cr18N steel[J]. Mater. Sci. Eng., 2017, A684: 634
[22] Humphreys F J, Hatherly M.Recrystallization and Related Annealing Phenomena[M]. 2nd Ed., Oxford UK: Elsevier Ltd., 2004: 262
[23] Wang S T, Yang K, Shan Y Y, et al.Study of cold deformation behaviors of a high nitrogen austenitic stainless steel and 316L stainless steel[J]. Acta Metall. Sin., 2007, 43: 171(王松涛, 杨柯, 单以银等. 高氮奥氏体不锈钢与316L不锈钢的冷变形行为研究[J]. 金属学报, 2007, 43: 171)
[24] Landon P R, Caligiuri R D, Duletsky P S.The influence of the M23(C, N)6 compound on the mechanical properties of type 422 stainless steel[J]. Metall. Trans., 1983, 14A: 1395
[25] Tavassoli A A, Colombe G.Mechanical and microstructural properties of alloy 800[J]. Metall. Trans., 1978, 9A: 1203
[26] Zhang X S, Xu Y, Zhang S H, et al.Research on the collaborative effect of plastic deformation and solution treatment in the intergranular corrosion property of austenite stainless steel[J]. Acta Metall. Sin., 2017, 53: 335(张晓嵩, 徐勇, 张士宏等. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53: 335)
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.