|
|
单晶Cu等通道转角挤压A路径形变特征及力学性能 |
郭廷彪1,2( ), 李琦1, 王晨1, 张锋1, 贾智1,2 |
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050 2 兰州理工大学有色金属合金及加工教育部重点实验室 兰州 730050 |
|
Deformation Characteristics and Mechanical Properties of Single Crystal Copper During Equal Channel Angular Pressing by Route A |
Tingbiao GUO1,2( ), Qi LI1, Chen WANG1, Feng ZHANG1, Zhi JIA1,2 |
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2 Key Laboratory of Non-Ferrous Metal Alloys and Processing, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China |
引用本文:
郭廷彪, 李琦, 王晨, 张锋, 贾智. 单晶Cu等通道转角挤压A路径形变特征及力学性能[J]. 金属学报, 2017, 53(8): 991-1000.
Tingbiao GUO,
Qi LI,
Chen WANG,
Feng ZHANG,
Zhi JIA.
Deformation Characteristics and Mechanical Properties of Single Crystal Copper During Equal Channel Angular Pressing by Route A[J]. Acta Metall Sin, 2017, 53(8): 991-1000.
[1] | Fukuda Y, Oh-Ishi K, Furukawa M, et al.Influence of crystal orientation on the processing of copper single crystals by ECAP[J]. J. Mater. Sci., 2007, 42: 1501 | [2] | Sun L X, Tao N R, Lu K.A high strength and high electrical conductivity bulk CuCrZr alloy with nanotwins[J]. Scr. Mater., 2015, 99: 73 | [3] | Lu L, Chen X H, Huang X X, et al.Revealing the maximum strength in nanotwinned copper[J]. China Basic Sci., 2010, 12(1): 16(卢磊, 陈先华, 黄晓旭等. 纳米孪晶纯铜的极值强度及纳米孪晶提高金属材料综合强韧性[J]. 中国基础科学, 2010, 12(1): 16) | [4] | Gao L, Chen R S, Han E H.Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys[J]. J. Alloys Compd., 2009, 481: 379 | [5] | Lu K, Lu L, Suresh S.Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science, 2009, 324: 349 | [6] | Ning Y T, Zhang X H, Wu Y J.Strain strengthening of Cu-Ag alloy in situ filamentary composites[J]. Chin. J. Nonferrous Met., 2007, 17: 68(宁远涛, 张晓辉, 吴跃军. Cu-Ag合金原位纤维复合材料的应变强化效应[J]. 中国有色金属学报, 2007, 17: 68) | [7] | Pry R H, Hennig R W.On the use of electrical resistivity as a measure of plastic deformation in copper[J]. Acta Metall., 1954, 2: 318 | [8] | Lu L, Lu K.Metallic materials with nano-scale twins[J]. Acta Metall. Sin., 2010, 46: 1422(卢磊, 卢柯. 纳米孪晶金属材料[J]. 金属学报, 2010, 46: 1422) | [9] | Lu L, You Z S.Plastic deformation mechanisms in nanotwinned metals[J]. Acta Metall. Sin., 2014, 50: 129(卢磊, 尤泽升. 纳米孪晶金属塑性变形机制[J]. 金属学报, 2014, 50: 129) | [10] | Shen Y F, Lu L, Lu Q H, et al.Tensile properties of copper with nano-scale twins[J]. Scr. Mater., 2005, 52: 989 | [11] | Lu L, Shen Y F, Chen X H, et al.Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304: 422 | [12] | Shih H, Yu C Y, Kao P W, et al.Microstructure and flow stress of copper deformed to large plastic strains[J]. Scr. Mater., 2001, 45: 793 | [13] | Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45: 103 | [14] | Tao N R, Lu K.Structured metallic materials via plastic deformation[J]. Acta Metall. Sin., 2014, 50: 141(陶乃镕, 卢柯. 纳米结构金属材料的塑性变形制备技术[J]. 金属学报, 2014, 50: 141) | [15] | Zhu C C, Ma A B, Jiang J H, et al.Effect of ECAP combined cold working on mechanical properties and electrical conductivity of Conform-produced Cu-Mg alloys[J]. J. Alloys Compd., 2014, 582: 135 | [16] | Purcek G, Yanar H, Demirtas M, et al.Optimization of strength, ductility and electrical conductivity of Cu-Cr-Zr alloy by combining multi-route ECAP and aging[J]. Mater. Sci. Eng., 2016, A649: 114 | [17] | Wu S D, An X H, Han W Z, et al.Microstructure evolution and mechanical properties of fcc metallic materials subjected to equal channel angular pressing[J]. Acta Metall. Sin., 2010, 46: 257(吴世丁, 安祥海, 韩卫忠等. 等通道转角挤压过程中fcc金属的微观结构演化与力学性能[J]. 金属学报, 2010, 46: 257) | [18] | Fukuda Y, Oh-Ishi K, Furukawa M, et al.Influence of crystal orientation on ECAP of aluminum single crystals[J]. Mater. Sci. Eng., 2006, A420: 79 | [19] | Guo T B, Ding Y T, Yuan X F, et al.Microstructure and orientation evolution of unidirectional solidification pure copper during ECAP[J]. Rare Met. Mater. Eng., 2011, 40: 171 | [20] | Iwahashi Y, Horita Z, Nemoto M, et al.An investigation of microstructural evolution during equal-channel angular pressing[J]. Acta Metall., 1997, 45: 4733 | [21] | Hu J, Lin D L, Wang Y.EBSD analyses of the microstructural evolution and CSL characteristic grain boundary of coarse-grained NiAl alloy during plastic deformation[J]. Acta Metall. Sin., 2009, 45: 652(胡静, 林栋梁, 王燕. EBSD技术分析大晶粒NiAl合金高温塑性变形组织演变与CSL特征晶界分布[J]. 金属学报, 2009, 45: 652) | [22] | He Y B, Pan Q L, Qin Y J, et al.Microstructure and mechanical properties of ultra-fine grain ZK60 magnesium alloy processed by equal channel angular pressing[J]. Chin. J. Nonferrous Met., 2010, 20: 2274(何运斌, 潘清林, 覃银江等. 等通道角挤压制备细晶ZK60镁合金的组织与力学性能[J]. 中国有色金属学报, 2010, 20: 2274) | [23] | Wen Y N, Zhang J M.Surface energy calculation of the bcc metals by using the MAEAM[J]. Computat. Mater. Sci., 2008, 42: 281 | [24] | Guo T B, Ding Y T, Yuan X F, et al.Grain orientation evolution and texture fluctuation effect of pure copper during equal channel angular pressing[J]. Chin. J. Nonferrous Met., 2011, 21: 384(郭廷彪, 丁雨田, 袁训锋等. 等通道角挤压中纯铜的晶粒取向演变及织构起伏效应[J]. 中国有色金属学报, 2011, 21: 384) | [25] | Xu J, Li J W, Shan D B, et al.Microstructural evolution and micro/meso-deformation behavior in pure copper processed by equal-channel angular pressing[J]. Mater. Sci. Eng., 2016, A664: 114 | [26] | Segal V M.Equal channel angular extrusion: From macromechanics to structure formation[J]. Mater. Sci. Eng., 1999, 271: 322 | [27] | Yun X B, Song B Y, Chen L.Ultra-fine grain copper prepared by continuous equal channel angular press[J]. Chin. J. Nonferrous Met., 2006, 16: 1563(运新兵, 宋宝韫, 陈莉. 连续等径角挤压制备超细晶铜[J]. 中国有色金属学报, 2006, 16: 1563) | [28] | Yamakov V, Wolf D, Salazar M, et al.Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation[J]. Acta Metall., 2001, 49: 2713 | [29] | An X H, Wu S D, Zhang Z F.Influence of stacking fault energy on the microstructures, tensile and fatigue properties of nanostructured Cu-Al alloys[J]. Acta Metall. Sin., 2014, 50: 191(安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响[J]. 金属学报, 2014, 50: 191) | [30] | Zheng W W, Sun Z Q.The rotation of the B2-ordered Fe3Al single crystal during room temperature tensile[J]. Acta Metall. Sin., 2000, 36: 1161(郑为为, 孙祖庆. B2结构Fe3Al单晶在室温拉伸过程中的取向转动[J]. 金属学报, 2000, 36: 1161) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|