Please wait a minute...
金属学报  2017, Vol. 53 Issue (8): 983-990    DOI: 10.11900/0412.1961.2016.00545
  本期目录 | 过刊浏览 |
添加N对Inconel 690合金显微组织和晶界微区成分的影响
陈波(), 郝宪朝, 马颖澈, 查向东, 刘奎
中国科学院金属研究所 沈阳 110016
Effects of Nitrogen Addition on Microstructure and Grain Boundary Microchemistry of Inconel Alloy 690
Bo CHEN(), Xianchao HAO, Yingche MA, Xiangdong CHA, Kui LIU
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

陈波, 郝宪朝, 马颖澈, 查向东, 刘奎. 添加N对Inconel 690合金显微组织和晶界微区成分的影响[J]. 金属学报, 2017, 53(8): 983-990.
Bo CHEN, Xianchao HAO, Yingche MA, Xiangdong CHA, Kui LIU. Effects of Nitrogen Addition on Microstructure and Grain Boundary Microchemistry of Inconel Alloy 690[J]. Acta Metall Sin, 2017, 53(8): 983-990.

全文: PDF(938 KB)   HTML
  
摘要: 

采用SEM和TEM研究了4种不同N含量的Inconel 690合金经1080 ℃、10 min固溶及715 ℃热处理后的显微组织演变和晶界微区元素分布,同时测量了合金的层错几率和晶间腐蚀速率。结果表明,相同热处理后,不同N含量Inconel 690合金的晶界M23C6碳化物析出形貌和晶界Cr贫化存在明显差异。随N含量增加,碳化物数量减少,晶界碳化物由连续分布转变为半连续分布,继而转变为离散分布。随N含量增加,Inconel 690合金层错几率先增加,在N含量为100×10-6时达到最大值,随后层错几率降低。此外,N的加入缓解了晶界Cr贫化,提高了合金抗晶间腐蚀能力;但过高N含量导致较多氮化物夹杂。综合考虑,N含量在100×10-6较为适宜。

关键词 Inconel 690 合金显微组织碳化物N    
Abstract

Inconel alloy 690 is an austenitic nickel-based corrosion resistant alloy with about 30%Cr, which is considered as the most ideal steam generator tubing materials in nuclear power plants because of its superior resistance to intergranular attack (IGA). However, the existence of impurities and the addition of minor alloying elements cause significant difference of carbide morphology, microstructure and chromium depletion of Inconel alloy 690. In this work, the microstructure and grain boundary chemistry of Inconel alloy 690 with four different nitrogen contents have been investigated by SEM and TEM. Stacking fault probability (SFP) and IGA with respect to the microstructure was tested and analyzed. The results indicated that thermal treatment at 715 ℃ following solution annealing (SA) at 1080 ℃ caused a wide range of intergranular carbide morphology with the associated chromium depletion in the vicinity of grain boundaries. With the increasing of nitrogen content, the characters of the carbides ranged from thin continuous bands along boundaries to coarse discrete particles. Stacking fault probability was increased with the increasing of nitrogen content, and the value reached the peak at 100×10-6 of nitrogen content, then it dropped. The corrosion tests showed that moderate nitrogen content alloy performed favorable intergranular attack correlated with the presence of semi-continuous grain boundary carbide and chromium depletion was mitigated. The consequent nitrides were appeared in high nitrogen alloy. So, about 100×10-6 contents of nitrogen in alloy 690 is suitable by synthesis considering of carbides, nitrides and chromium depletion.

Key wordsInconel alloy 690    microstructure    carbide    N
收稿日期: 2016-12-05     
ZTFLH:  TG132.32  
作者简介:

作者简介 陈 波,男,1976年生,副教授,博士

Alloy N C Cr Fe Ti Al Ni
690-38 0.0038 0.018 29.2 10.5 0.26 0.28 Bal.
690-100 0.0100 0.015 29.8 9.8 0.27 0.29 Bal.
690-220 0.0220 0.018 29.8 10.0 0.27 0.30 Bal.
690-330 0.0330 0.015 29.7 10.0 0.25 0.26 Bal.
表1  690合金化学成分
图1  经1080 ℃、10 min固溶和715 ℃、15 h 热处理后不同N含量690合金晶界碳化物的SEM像
图2  经1080 ℃、10 min固溶和715 ℃、15 h 热处理后不同N含量690合金晶界碳化物的TEM像
图3  经1080 ℃、10 min固溶和715 ℃、15 h 热处理后N含量为38×10-6的690合金中孪晶界碳化物形貌的TEM像及孪晶、碳化物的SAED花样
图4  不同N含量690合金固溶和715 ℃、15 h热处理后TiN析出相形貌的SEM像
图5  不同N含量690合金经固溶和热处理后层错形貌的TEM像
图6  不同N含量690合金经1080 ℃、10 min固溶后在715 ℃热处理不同时间后的晶界Cr贫化
N content / 10-6 Lowest of Cr content / % Width of Cr depletions zone / nm
38 24.6 500
100 26.4 400
220 27.2 300
330 28.6 200
表2  不同N含量690合金经1080 ℃、10 min固溶及715 ℃、15 h 热处理后晶界Cr含量和贫Cr区宽度
[1] Chernoff H, Kenneth C W.Steam generator replacement overview[J]. Power Eng., 1996, 100: 25
[2] Park H B, Kim Y H, Lee B W, et al.Effect of heat treatment on fatigue crack growth rate of Inconel 690 and Inconel 600[J]. J. Nucl. Mater., 1996, 231: 204
[3] Lim M K, Oh S D, Lee Y Z.Friction and wear of Inconel 690 and Inconel 600 for steam generator tube in room temperature water[J]. Nucl. Eng. Des., 2003, 226: 97
[4] Kai J J, Liu M N.The effects of heat treatment on the carbide evolution and the chromium depletion along grain boundary of inconel 690 alloy[J]. Scr. Metall., 1989, 23: 17
[5] Kai J J, Yu G P, Tsai C H, et al.The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of INCONEL alloy 690[J]. Metall. Trans., 1989, 20A: 2057
[6] Qiu S Y, Su X W, Wen Y, et al.Effect of heat treatments on corrosion resistance of alloy 690[J]. Nucl. Power Eng., 1995, 16: 336(邱绍宇, 苏兴万, 文燕, 等. 热处理对690合金腐蚀性能影响的实验研究[J]. 核动力工程, 1995, 16: 336)
[7] Stiller K, Nilsson J, Norring K.Structure, chemistry, and stress corrosion cracking of grain boundaries in alloys 600 and 690[J]. Metall. Mater. Trans., 1996, 27A: 327
[8] Thuvander M, Stiller K. Structure and chemistry of grain boundaries in Ni-16Cr-9Fe model materials [J]. Appl. Surf. Sci. 1995; 87-88: 251
[9] Fuchs G E, Hayden S Z.The microstructure and tensile properties of mitrogen containing vacuum atomized alloy 690[J]. Scr. Metall. Mater., 1991; 25: 1483
[10] Li S, Chen B, Ma Y C, et al.Effects of nitrogen content on microstructure and mechanical property of 690[J]. Acta Metall. Sin., 2011, 47: 816(李硕, 陈波, 马颖澈等. N含量对690合金显微组织和室温力学性能的影响[J]. 金属学报, 2011, 47: 816)
[11] Schramm R E, Reed R P.Stacking fault energies of seven commercial austenitic stainless steels[J]. Metall. Trans., 1975, 6A: 1345
[12] Stoltz R E, Sande J B.The effect of nitrogen on stacking fault energy of Fe-Ni-Cr-Mn steels[J]. Metall. Trans., 1980, 11A: 1033
[13] Reed R P.Nitrogen in austenitic stainless steels[J]. JOM, 1989, 41(3): 16
[14] Airey G P.Microstructural aspects of the thermal treatment of Inconel alloy 600[J]. Metallography, 1980, 13: 21
[15] Li H, Xia S, Zhou B X, et al.Evolution of carbide morphology precipitated at grain boundaries in Ni-based alloy 690[J]. Acta Metall. Sin., 2009, 45: 195(李慧, 夏爽, 周邦新等. 镍基690合金时效过程中晶界碳化物的形貌演化[J]. 金属学报, 2009, 45: 195)
[16] Li Q, Zhou B X.A study of microstructure of alloy 690[J]. Acta Metall. Sin., 2001, 37: 8(李强, 周邦新. 690合金的显微组织研究[J]. 金属学报, 2001, 37: 8)
[17] Jiang R.Study on solidification segregation and precipitates in nitrogen-containing Alloy 690 [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011(江荣. 含氮Inconel 690合金的凝固偏析和相析出行为研究 [D]. 沈阳: 中国科学院金属研究所, 2011)
[18] Dastur Y N, Leslie W C.Mechanism of work hardening in Hadfield manganese steel[J]. Metall. Trans., 1981, 12A: 749
[19] Wada H, Pehlke R D.Nitrogen solution and titanium nitride precipitation in liquid Fe-Cr-Ni alloys[J]. Metall. Trans., 1977, 8B: 443
[20] Pak J J, Jeong Y S, Hong I K, et al.Thermodynamics of formation TiN in Fe-Cr melts[J]. ISIJ Int., 2005, 45: 1106
[21] Kunze J, Mickel C, Leonhardt M, et al.Precipitation of titanium nitride in low-alloyed steel during solidification[J], Steel Res., 1997, 68: 403
[22] Meng F J, Wang J Q, Han E H, et al.The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water[J]. Corros. Sci., 2010, 52: 927
[23] Abdulranhan R F, Hendry A.The solubility of nitrogen in liquid pure nickel[J]. Metall. Mater. Trans., 2001, 32B: 1095
[24] Abdulranhan R F, Hendry A.Solubility of nitrogen in liquid nickel-based alloys[J]. Metall. Mater. Trans., 2001, 32B: 1103
[25] Simmons J W, Covino B S, Hawk J A.Effect of nitride (Cr2N) precipitation on the mechanical, corrosion, and wear properties of austenitic stainless steel[J]. ISIJ Int., 1996, 36: 846
[26] Mao W M, Zhu J C, Li J, et al.Structure and Properties of Metallic Materials [M]. Beijing: Tsinghua University Press, 2008: 127(毛卫明, 朱景川, 郦剑等. 金属材料结构与性能 [M]. 北京: 清华大学出版社, 2008: 127)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[4] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[6] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[7] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[8] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[9] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[10] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[11] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[14] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[15] 张志东. 铁磁性三维Ising模型精确解及时间的自发产生[J]. 金属学报, 2023, 59(4): 489-501.