Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1601-1609    DOI: 10.11900/0412.1961.2016.00078
  本期目录 | 过刊浏览 |
宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*
韩克昌1,刘一奇1,林国强1(),董闯1,邰凯平2,姜辛2
1 大连理工大学三束材料改性教育部重点实验室, 大连 116024
2 中国科学院金属研究所, 沈阳 110016
STUDY ON ATOMIC-SCALE STRENGTHENING MECHANISM OF TRANSITION-METAL NITRIDE MNx (M=Ti, Zr, Hf) FILMS WITHIN WIDE COMPOSITION RANGES
Kechang HAN1,Yiqi LIU1,Guoqiang LIN1(),Chuang DONG1,Kaiping TAI2,Xin JIANG2
1 Key Laboratory for Material Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
2 Institute of Metals Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

韩克昌,刘一奇,林国强,董闯,邰凯平,姜辛. 宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*[J]. 金属学报, 2016, 52(12): 1601-1609.
Kechang HAN, Yiqi LIU, Guoqiang LIN, Chuang DONG, Kaiping TAI, Xin JIANG. STUDY ON ATOMIC-SCALE STRENGTHENING MECHANISM OF TRANSITION-METAL NITRIDE MNx (M=Ti, Zr, Hf) FILMS WITHIN WIDE COMPOSITION RANGES[J]. Acta Metall Sin, 2016, 52(12): 1601-1609.

全文: PDF(1966 KB)   HTML
摘要: 

采用增强磁过滤电弧离子镀技术在单晶Si基片上制备了3组不同过渡金属的氮化物薄膜MNx (M=Ti, Zr, Hf). 利用FESEM, GIXRD, XPS, Nano Indenter等方法对MNx薄膜的形貌、厚度、相结构、成分、元素的化学态、残余应力、弹性模量和硬度等进行了表征. 结果表明, 3组MNx薄膜均在较宽的成分范围内表现为fcc单相结构, 并且同组薄膜间的择优取向、厚度、晶粒尺寸和残余应力等均基本保持一致; 特别是3组薄膜的硬度和弹性模量均随N成分x的变化而变化, 并且都在x=0.82附近出现性能峰值. 分析表明, MNx薄膜与成分相关的性能增强, 其决定性因素不在于介观尺度的晶粒细化、择优取向及内应力等, 而是取决于原子尺度的化学键合及电子结构等因素.

关键词 过渡金属氮化物薄膜,电弧离子镀,成分,力学性能,强化机制    
Abstract

Transition-metal nitrides have long attracted considerable attention among researchers and ubiquitous applications in various fields due to their renowned mechanical properties. However almost all the discussions of the strengthening mechanism were on conventional meso scale. For further understanding on the atomic scale strengthening mechanism of transition-metal nitrides, three groups of MNx (M=Ti, Zr, Hf) films with different nitrogen contents were synthesized on the Si substrates by magnetic filtering arc ion plating. The morphologies and thickness of the as-deposited films were characterized by FESEM, the microstructures and the residual stresses were characterized by XRD, the XPS and Nano Indenter were used to measure the chemical states and hardness (also the elastic modulus) of as-deposited films, respectively. The results show that all three groups MNx films perform the B1-NaCl single-phase structure within the large composition ranges. The preferred orientation, thickness, grain size and residual stress of the MNx films with different nitrogen contents were not changed so much. While the nanohardness and elastic modulus of MNx both first increased and then decreased with the rise of nitrogen content, and the peak values all existed when x near to 0.82. The strengthening mechanism was discussed and the decisive factor of composition dependent hardness enhancement was found from the atomic-scale chemical bonding states and electronic structure in this work, rather than the conventional meso-scale factors, such as preferred orientation, grain size and residual stress.

Key wordstransition-metal nitride film,    arc ion plating,    composition,    mechanical property,    strengthening mechanism
收稿日期: 2016-03-09     
基金资助:* 国家自然科学基金资助项目 51271047
图1  增强磁过滤电弧离子镀设备示意图
Film Sample N2 flow rate / (Lmin-1)
TiNx T-1 0.03
T-2 0.06
T-3 0.09
T-4 0.12
T-5 0.18
T-6 0.24
T-7 0.27
T-8 0.30
ZrNx Z-1 0.06
Z-2 0.09
Z-3 0.12
Z-4 0.15
Z-5 0.18
Z-6 0.21
Z-7 0.24
Z-8 0.27
HfNx H-1 0.03
H-2 0.06
H-3 0.12
H-4 0.18
表1  电弧离子镀沉积MNx薄膜时的N2流量
图2  MNx薄膜样品的表面和截面SEM像
图3  不同N2流量下沉积的MNx薄膜的XRD谱
图4  不同N2流量下沉积的MNx薄膜晶格常数
图5  不同N2流量下沉积的MNx薄膜晶粒尺寸
图6  TiNx薄膜XPS全谱
图7  MNx薄膜高分辨XPS分峰拟合谱
Film Sample Atomic fraction / % x
Ti(Zr, Hf) N O
TiNx T-1 55.5 41.8 2.7 0.75
T-2 55.1 42.6 2.3 0.77
T-3 53.5 44.1 2.4 0.82
T-4 51.3 46.4 2.3 0.91
T-5 50.5 47.4 2.1 0.94
T-6 49.7 48.1 2.2 0.97
T-7 49.4 48.4 2.2 0.98
T-8 49.1 48.8 2.1 0.99
ZrNx Z-1 55.7 41.6 2.7 0.74
Z-2 55.2 42.2 2.6 0.76
Z-3 53.7 43.3 2.8 0.81
Z-4 53.2 44.4 2.4 0.84
Z-5 52.1 45.3 2.6 0.87
Z-6 51.4 45.7 2.9 0.89
Z-7 50.7 46.5 2.8 0.92
Z-8 49.8 47.3 2.9 0.95
HfNx H-1 58.4 39.1 2.5 0.67
H-2 54.8 42.5 2.7 0.78
H-3 53.7 43.9 2.4 0.82
H-4 52.0 46.0 2.0 0.89
表2  采用XPS测定的MNx薄膜成分
图8  MNx薄膜残余应力随N元素浓度x的变化
图9  T-3样品的硬度-压入深度曲线
图10  MNx薄膜的硬度和弹性模量随x的变化
[1] Toth L.Transition Metal Carbides and Nitrides. New York: Academic Press, 1971: 18
[2] Sundgren J E.Physics and Chemistry of Protective Coatings. New York: American Institute of Physics, 1986: 79
[3] Liu H X, Jiang Y H, Zhou R, Zhou R F, Jin Q L, Tang B Y.Acta Metall Sin, 2008; 44: 325
[3] (刘洪喜, 蒋业华, 周荣, 周荣锋, 金青林, 汤宝寅. 金属学报, 2008; 44: 325)
[4] Larijani M M, Tabrizi N, Norouzian S, Jafari A, Lahouti S, Haj Hosseini H, Afshari N.Vacuum, 2006; 81: 550
[5] Michael E O, Robert H P, Warren C O.Thin Solid Films, 1989; 181: 357
[6] Arnell R D, Colligon J S, Minnebaev K F, Yurasova V E.Vacuum, 1996; 47: 425
[7] Abdallah B, Naddaf M, A-Kharroub M.Nucl Inst Meth, 2013; 298B: 55
[8] Huang J, Ho C, Yu G.Mater Chem Phys, 2007; 102: 31
[9] Xu J H, Wang X, Ma S L, Liu Y, Xu K W.Chin J Mater Res, 2008; 22: 201
[9] (徐建华, 王昕, 马胜利, 刘阳, 徐可为. 材料研究学报, 2008; 22: 201)
[10] Jhi S, Ihm J, Louie S G, Cohen M L.Nature, 1999; 399: 132
[11] Shin C S, Gall D, Hellgren N, Patscheider J, Petrov I, Greene J E.J Appl Phys, 2003; 93: 6025
[12] Ma C H, Huang J H, Chen H.Thin Solid Films, 2002; 418: 73
[13] Huang M D, Lin G Q, Zhao Y H, Sun C, Wen L S, Dong C.Surf Coat Technol, 2003; 176: 109
[14] Lin G Q, Zhao Y H, Guo H M, Wang D Z, Dong C, Huang R, Wen L S.J Vac Sci Technol, 2004; 22A: 1218
[15] Schmid P E, Sato Sunaga M, Lévy F.J Vac Sci Technol, 1998; 16A: 2870
[16] Duan G F, Zhao G L, Wu L, Lin X X, Han G R.Appl Surf Sci, 2011; 257: 2428
[17] Tsetseris L, Kalfagiannis N, Logothetidis S, Pantelides S T.Phys Rev Lett, 2007; 99: 125503
[18] Mai Z H.X-Ray Characterization of Thin Film Structure. 2nd Ed., Beijing: Science Press, 2015: 80
[18] (麦振洪. 薄膜结构X射线表征.第2版, 北京: 科学出版社, 2015: 80)
[19] Whang K W, Seo Y W.J Vac Sci Technol, 1993; 11A: 1496
[20] Bertoti I, Mohai M, Sullivan J L, Saied S O.Appl Surf Sci, 1995; 84: 357
[21] Chan M H, Lu F H.Thin Solid Films, 2009; 517: 5006
[22] Jiang N, Zhang H J, Bao S N, Shen Y G, Zhou Z F.Physica, 2004; 352B: 118
[23] Ev I M, Strehbtow H H, Ek B N.Thin Solid Films, 1997; 303: 246
[24] Roman D, Bernardi J, Amorim C L G D, de Souza F S, Spinelli A, Giacomelli C, Figueroa C A, Baumvol I J R, Basso R L O.Mater Chem Phys, 2011; 130: 147
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.