Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1610-1618    DOI: 10.11900/0412.1961.2016.00154
  本期目录 | 过刊浏览 |
基体材料力学性能对316L不锈钢颗粒沉积行为的影响*
马广璐1,2,崔新宇1(),沈艳芳1,NuriaCINCA2,JosepM.GUILEMANY2,熊天英1
1) 中国科学院金属研究所, 沈阳 110016
2) Thermal Spray Center (CPT), University of Barcelona, Barcelona 08028, Spain;
INFLUENCE OF SUBSTRATE MECHANICAL PROPER-TIES ON DEPOSITION BEHAVIOUR OF 316L STAINLESS STEEL POWDER
Guanglu MA1,2,Xinyu CUI1(),Yanfang SHEN1,CINCA Nuria2,M. GUILEMANY Josep2,Tianying XIONG1
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2) Thermal Spray Center (CPT), University of Barcelona, Barcelona 08028, Spain;;
引用本文:

马广璐, 崔新宇, 沈艳芳, NuriaCINCA, JosepM.GUILEMANY, 熊天英. 基体材料力学性能对316L不锈钢颗粒沉积行为的影响*[J]. 金属学报, 2016, 52(12): 1610-1618.
Guanglu MA, Xinyu CUI, Yanfang SHEN, CINCA Nuria, M. GUILEMANY Josep, Tianying XIONG. INFLUENCE OF SUBSTRATE MECHANICAL PROPER-TIES ON DEPOSITION BEHAVIOUR OF 316L STAINLESS STEEL POWDER[J]. Acta Metall Sin, 2016, 52(12): 1610-1618.

全文: PDF(2842 KB)   HTML
摘要: 

研究了基体材料的力学性能对冷喷涂316L不锈钢单颗粒沉积行为的影响. 结果表明, 除硬度之外, 弹性模量和Poisson比也会影响颗粒的沉积行为. 这是由于基体性质对颗粒/基体的能量分配和结合机制造成了影响. 其中, 沉积颗粒的变形行为与颗粒吸收的能量有关, 而沉积效率与基体吸收的能量及结合机制有关. 根据沉积颗粒的变形行为, 将基体分为2类: 颗粒几乎不变形, 此时基体的硬度和弹性模量皆低于颗粒材料, 颗粒与基体的结合主要是机械咬合, 推导出可用于推断相同颗粒在基体上沉积趋势的参数Epara, 并以AZ91镁合金为基体进行验证; 颗粒发生强烈变形, 此时基体的硬度或弹性模量高于颗粒材料, 结合机制更为复杂, 此时增加颗粒/基体新鲜表面接触面积有利于提高沉积效率.

关键词 316L不锈钢,基体力学性能,沉积行为    
Abstract

Nowadays the theory of critical velocity of particles in cold spray has been already accepted generally. In the familiar semi-empirical formulas of the theory, only the properties and conditions of particles have been considered but there is no consideration of substrate. Yet most researches for effect of substrates' properties implied hardness of substrate was the most essential. However, little attention has been devoted to influence of other mechanical properties (e.g. Young's modulus and Poisson's ratio) and their cooperation on the deposition behavior. In order to study the effect systematically, 316L stainless steel particles were deposited by wipe test on six different substrates with a widely range of mechanical properties including Young's modulus, hardness and Poisson's ratio. They are pure Al, pure Cu, 7075T6 Al alloy, mild steel, Inconel625 and Ti6Al4V. The specimens have been investigated from morphology, cross-section and deposition efficiency. It is found that not only hardness but also Young's modulus and Poisson's ratio can affect deformation and deposition of bonded particles through playing a role in energy partition and bonding mechanism. In the case, the deformation of deposited particles is dependent on energy accepted by the particles, while the deposition efficiency is related to the bonding mechanism and energy accepted by substrate. According to the deformation level of the deposited particles, there are two kinds of substrate materials. On the one hand, bonding between particles with little deformation and their substrates is mainly dependent on mechanical interlock, in which both hardness and Young′s modulus of the substrates are lower than that of the particle. Then a parameter, Epara, has been calculated to predict the tendency of deposition efficiency for the situations. AZ91 alloy has been employed as substrate material in confirmatory experiment. Its result indicates that Epara is available for tendency prediction of the deposition efficiency of spherical-like deposited particle. On the other hand, the bonding mechanism of deposited particle with obviously flattening is more complex. In this situation, either hardness or Young′s modulus of the substrates is higher than that of the particle. The more area of fresh metal contacts on the interface, the higher deposition efficiency is.

Key words316L stainless steel,    mechanical properties of substrate,    deposition behavior
收稿日期: 2016-04-21     
图1  冷喷涂316L不锈钢粉末的SEM像和粒度分布
图2  316L不锈钢颗粒沉积在不同基体上的SEM像(喷涂参数800 ℃, 3.5 MPa)
图3  316L不锈钢颗粒沉积在不同基体上的横截面SEM像 (喷涂参数800 ℃, 3.5 MPa)
Material Hardness Young's Poisson's ratio Rf Rd / %
HV modulus / GPa
316L 199 190 0.30
Al 27 69 0.33 1.10±0.10 96.2±2
Cu 98 120 0.34 1.38±0.20 95.5±2
AISI1015 150 205 0.29 1.64±0.20 86.9±4
7075T6 181 71 0.33 1.25±0.05 20.9±6
Inconel625 276 207 0.31 1.62±0.20 96.5±2
Ti6Al4V 352 114 0.34 1.88±0.20 95.9±3
AZ91 72 45 0.35 55.0±6
表1  实验原材料的力学性能, 316L不锈钢颗粒在不同基体上的扁平度Rf和沉积效率Rd (800 ℃, 3.5 MPa )
图4  316L不锈钢颗粒在弱基体上的沉积效率(Rd)与能量参数(Epara)随基体硬度和弹性模量的变化
[1] Alkhimov A P, Kosarev V F, Papyrin A N.Soviet Phys-Doklady, 1990; 35: 1047
[2] Li W Y, Yu M.Surf Technol, 2010; 39(5): 95
[2] (李文亚, 余敏. 表面技术, 2010; 39(5): 95)
[3] Tokarev A O.Met Sci Heat Treat, 1996; 38(3): 136
[4] Assadi H, G?rtner F, Stoltenhoff T, Kreye H.Acta Mater, 2003; 51: 4379
[5] Schmidt T, G?rtner F, Assadi H, Kreye H.Acta Mater, 2006; 54: 729
[6] Meng X M, Zhang J B, Liang Y L, Zhao J.Bao-Steel Technol, 2011; (5): 37
[6] (孟宪明, 张俊宝, 梁永立, 赵杰. 宝钢技术, 2011; (5): 37)
[7] Wu X K, Zhang J S, Zhou X L, Cui H, Liu J C.Sci China Technol Sci, 2012; 55: 357
[8] Christoulis D K, Guetta S, Guipont V, Jeandin M.J Therm Spray Technol, 2011; 20: 523
[9] Marrocco T, McCartney D G, Shipway P H, Sturgeon A J.J Therm Spray Technol, 2006; 15: 263
[10] Bae G, Xiong Y, Kumar S, Kang K, Lee C.Acta Mater, 2008; 56: 4858
[11] Yin S, Suo X K, Su J Q, Guo Z W, Liao H L, Wang X F. J Therm Spray Technol, 2014; 23: 76
[12] Gao P H, Li C J, Yang G J, Li Y G, Li C X.Appl Surf Sci, 2010; 256: 2263
[13] Taguchi G.System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs. New York: UNIPUB/Kraus International Publications, 1987: 1
[14] Taguchi G, Chowdhury S, Wu Y.Taguchi's Quality Engineering Handbook. New Jersey: Wiley-Interscience, 2004: 56
[15] King P C, Zahiri S H, Jahedi M.Acta Mater, 2008; 56: 5617
[16] Dykhuizen R C, Smith M F.J Therm Spray Technol, 1998; 7: 205
[17] Jodoin B, Raletz F, Vardelle M.Surf Coat Technol, 2006; 200: 4424
[18] Grujicic M, Zhao C L, Tong C, DeRosset W S, Helfritch D.Mater Sci Eng, 2004; A368: 222
[19] Ajdelsztajn L, Schoenung J M, Jodoin B, Kim G E.Metall Mater Trans, 2005; 36A: 657
[20] Jen T, Li L, Cui W, Chen Q, Zhang X.Int J Heat Mass Trans, 2005; 48: 4384
[21] Samareh B, Dolatabadi A. J Fluids Eng, 2008; 130: 081702
[22] Stolenhoff T, Kreye H, Ritchter H J.J Therm Spray Technol, 2002; 11: 542
[23] Samareh B, Stier O, Luther V, Dolatabadi A.J Therm Spray Technol, 2009; 18: 934
[24] Zhang D, Shipway P H, McCartney D G.China Surf Eng, 2008; 21(4): 1
[24] (Zhang D, Shipway P H, McCartney D G. 中国表面工程, 2008; 21(4): 1)
[25] Schmidt T, Assadi H, G?rtner F, Richter H, Stoltenhoff T, Kreye H, Klassen T.J Therm Spray Technol, 2009; 18: 794
[26] Li W Y, Li C J, Wang Y Y, Yang G J.Acta Metall Sin, 2005; 41: 282
[26] (李文亚, 李长久, 王豫跃, 杨冠军. 金属学报, 2005; 41: 282)
[27] Fukanuma H, Ohno N, Sun B, Huang R.Surf Coat Technol, 2006; 201: 1935
[28] Wu X K, Zhou X L, Wang J G, Zhang J S.Acta Metall Sin, 2010; 46: 385
[28] (巫湘坤, 周香林, 王建国, 张济山. 金属学报, 2010; 46: 385)
[29] Xiang J Y, Song R B, Hou D P, Ren P D.Mater Sci Technol, 2011; 19(4): 128
[29] (项建英, 宋仁伯, 侯东坡, 任培东. 材料科学与工艺, 2011; 19(4): 128)
[30] Ma G L, Kong L Y, Li T F, Cinca N, Guilemany J M, Xiong T Y. Rare Met Mater Eng#/magtechI#, 2016; accepted
[30] (马广璐, 孔令艳, 李铁藩, Nuria Cinca, Josep M Guilemany, 熊天英. 稀有金属材料与工程, 2016; 录用)
[31] Grujicic M, Zhao C L, DeRosset W S, Helfritch D.Mater Des, 2004; 25: 681
[32] McCune R C, Donlon W T, Popoola O O, Cartwright E L.J Therm Spray Technol, 2000; 9: 73
[33] Grujicic M, Saylora J R, Beasleya D E, De Rosset W S, Helfritch D.Appl Surf Sci, 2003; 219: 211
[34] Trompetter W J, Markwitz A, Hyland M, Munroe P.J Therm Spray Technol, 2005; 14: 524
[35] Li W Y, Zhang C, Guo X, Li C J, Liao H, Coddet C.Appl Surf Sci, 2007; 254: 517
[36] Bolesta A, Fomin V M, Sharafutdinov M R, Tolochko B P.Nucl Instrum Methods Phys Res, 2001; 470A: 249
[37] Johnson K L. Contact Mechanics.Cambridge: Cambridge University Press, 1985: 363
[38] Levin B F, Vecchio K S, Dupont J N, Marder A R.Metall Mater Trans, 1999; 30A: 1763
[39] Rahmati S, Ghaei A. J Therm Spray Technol, 2014; 23: 530
[1] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[2] 李丹, 李杨, 陈荣生, 倪红卫. 不锈钢网上水热制备NiCo2O4/MoS2纳米复合结构及其在电解水制氢中的应用[J]. 金属学报, 2018, 54(8): 1179-1186.
[3] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.
[4] 刘廷光, 夏爽, 白琴, 周邦新, 陆永浩. 孪晶界在316L不锈钢三维晶界网络中的分布特征[J]. 金属学报, 2018, 54(10): 1377-1386.
[5] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[6] 刘侠和, 吴欣强, 韩恩厚. 温度对国产核级316L不锈钢在加Zn水中电化学腐蚀性能的影响*[J]. 金属学报, 2014, 50(1): 64-70.
[7] 张利涛,王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49(8): 911-916.
[8] 喇培清,孟倩,姚亮,周毛熊,魏玉鹏. Al元素对热轧316L不锈钢显微组织和力学性能的影响[J]. 金属学报, 2013, 49(6): 739-744.
[9] 刘光洲 王建明 张鉴清 曹楚南. 电解法处理压载水对316L不锈钢腐蚀行为的影响[J]. 金属学报, 2011, 47(12): 1600-1604.
[10] 史永娟 任伊宾 张炳春 杨柯. 钝化处理对316L不锈钢血液相容性的影响[J]. 金属学报, 2011, 47(12): 1575-1580.
[11] 贾文鹏 汤慧萍 贺卫卫 林鑫 黄卫东. 316L不锈钢激光快速成形的微观组织模拟[J]. 金属学报, 2010, 46(2): 135-140.
[12] 方信贤 白允强 王章忠. J4不锈钢及化学镀Ni-P和Ni-Cu-P镀层在液-固两相流中的冲刷腐蚀行为[J]. 金属学报, 2010, 46(2): 239-244.
[13] 宋仁伯 项建英 侯东坡 任培东. 316L不锈钢热加工硬化行为及机制[J]. 金属学报, 2010, 46(1): 57-61.
[14] 江慧丰 陈学东 范志超 董杰 姜恒 陆守香. 动态应变时效对316L不锈钢疲劳蠕变行为的影响[J]. 金属学报, 2009, 45(3): 326-330.
[15] 王旭; 张俊善; 雷明凯 . 强流脉冲离子束辐照对316L不锈钢表面改性的实验研究[J]. 金属学报, 2007, 43(4): 393-398 .