Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1115-1122    DOI: 10.11900/0412.1961.2016.00048
  论文 本期目录 | 过刊浏览 |
AM50-x(Zn, Y)镁合金的显微组织、力学性能与凝固行为*
王峰(),马德志,王志,毛萍莉,刘正
沈阳工业大学材料科学与工程学院, 沈阳 110870
MICROSTRUCTURE, MECHANICAL PROPERTIES AND SOLIDIFICATION BEHAVIOR OF AM50-x(Zn, Y) MAGNESIUM ALLOYS
Feng WANG(),Dezhi MA,Zhi WANG,Pingli MAO,Zheng LIU
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
引用本文:

王峰,马德志,王志,毛萍莉,刘正. AM50-x(Zn, Y)镁合金的显微组织、力学性能与凝固行为*[J]. 金属学报, 2016, 52(9): 1115-1122.
Feng WANG, Dezhi MA, Zhi WANG, Pingli MAO, Zheng LIU. MICROSTRUCTURE, MECHANICAL PROPERTIES AND SOLIDIFICATION BEHAVIOR OF AM50-x(Zn, Y) MAGNESIUM ALLOYS[J]. Acta Metall Sin, 2016, 52(9): 1115-1122.

全文: PDF(1343 KB)   HTML
摘要: 

将Zn和Y元素以原子比为6∶1的形式加入AM50合金中, 并采用金属型铸造成形, 利用OM, SEM, EDS, XRD, 热分析法及拉伸实验研究了AM50-x(Zn, Y) (x=0, 2, 3, 4, 5, 质量分数, %)合金的显微组织、凝固行为及力学性能. 结果表明: 向AM50合金中按原子比为6∶1的形式加入Zn和Y元素后, 组织得到明显细化, 组织中并未形成Mg3Zn6Y准晶相, 而是形成了颗粒状的Al6YMn6相和细小的Al2Y相, 其中Al6YMn6相尺寸随着Zn和Y元素含量的增加而增大; 当x≥3时, 在组织中β相的周围逐渐形成层片状的Φ-Mg21(Zn, Al)17相, 且其数量逐渐增加. 热分析结果表明, Φ-Mg21(Zn, Al)17相约在354 ℃通过包晶反应形成, 其中α-Mg和β相析出温度随着x的增加而降低. 由于Al6YMn6相、Al2Y相和Φ-Mg21(Zn, Al)17相的形成, 使得β相的尺寸减小、数量减少; 当x=4时, 合金组织最为细小, 且合金力学性能达到最优, 其抗拉强度、屈服强度和伸长率分别为206.63 MPa, 92.50 MPa和10.04%.

关键词 镁合金AM50显微组织热分析力学性能    
Abstract

As the lightest metallic structural material, magnesium alloys were widely used in automotive, aerospace, electronic equipment and other fields. Among commercial magnesium alloys, AM series were commonly used due to excellent ductility and energy absorption. However, their relatively poor strength greatly restricted their extended use. In order to improve mechanical properties of AM50 alloy, the Zn and Y elements were added into the AM50 alloy in the form of atomic ratio of 6∶1 by the permanent mold casting. The microstructure, solidification behavior and mechanical properties of AM50-x(Zn, Y) (x=0, 2, 3, 4, 5, mass fraction, %) alloys were investigated by OM, SEM, EDS, XRD, thermal analysis and tensile tests. The results indicated that addition of Zn and Y elements with an atomic ratio of 6∶1 to AM50 alloy, the microstructures were obviously refined, and the quasicrystal I-phase(Mg3Zn6Y) cannot form. In addition, the granular Al6YMn6 phase and fine Al2Y phase were formed in the microstructure, and the size of Al6YMn6 phase increased with increasing the Zn and Y content. The Φ-Mg21(Zn, Al)17 phase with lamellar structure was formed around β phase when x≥3, and its amount increased with increasing the Zn and Y addition. Thermal analysis results show that the Φ-Mg21(Zn, Al)17 phase was formed at 354 ℃ by the peritectic reaction, in which the precipitation temperatures of α-Mg and β phase were decreased with the increase of x content. Due to the formation of Al6YMn6, Al2Y and Φ-Mg21(Zn, Al)17 phases, the size and amount of the β phase was decreased. For AM50-4(Zn, Y) alloy, the microstructure was greatly refined, and the ultimate tensile strength, yield strength and elongation of the alloy reached to the maximum, 206.63 MPa, 92.50 MPa and 10.04%, respectively.

Key wordsmagnesium alloy    AM50    microstructure    thermal analysis    mechanical property
收稿日期: 2016-01-29     
基金资助:* 国家自然科学基金项目51504153, 辽宁省自然科学基金项目201602548以及辽宁省高校创新团队支持计划项目LT2013004资助
Alloy Al Mn Zn Y Mg
AM50-0(Zn, Y) 5.05 0.28 0.18 - Bal.
AM50-2(Zn, Y) 5.09 0.27 1.71 0.32 Bal.
AM50-3(Zn, Y) 4.95 0.26 2.53 0.52 Bal.
AM50-4(Zn, Y) 4.98 0.28 3.36 0.73 Bal.
AM50-5(Zn, Y) 4.92 0.29 4.23 0.90 Bal.
表1  合金的化学成分
图1  AM50-x(Zn, Y)合金的显微组织
图2  AM50-x(Zn, Y)合金的SEM像及XRD谱
图3  AM50合金的SEM像和EDS分析
图4  AM50-4(Zn, Y)合金的SEM像和EDS分析
图5  AM50-4(Zn, Y)合金的SEM像和各元素的面扫描图
图6  AM50-x (Zn, Y)合金的热分析结果
表2  热分析曲线中对应的关键温度
图7  AM50-x(Zn, Y)合金的室温拉伸性能
[1] Agnew S R, Nie J F.Scr Mater, 2010; 63: 671
[2] Easton M, Beer A, Barnett M, Davies C, Dunlop G, Durandet Y, Blacket S, Hilditch T, Beggs P.JOM, 2008; 60(11): 57
[3] Fechner D, Hort N, Blawert C, Dieringa H, St?rmer M, Kainer K U. J Mater Sci, 2012; 47: 5461
[4] Kondori B, Mahmudi R.Mater Sci Eng, 2010; A527: 2014
[5] ünal M.Int J Cast Met Res, 2014; 27(2): 80
[6] Wang Q D, Lin J B, Liu M P, Ding W J.Int J Mater Res, 2008; 99: 761
[7] Wang J L, Yang J, Wu Y M, Zhang H J, Wang L M.Mater Sci Eng, 2008; A472: 332
[8] Singh L K, Srinivasan A, Pillai U T S, Joseph M A, Pai B C.Trans Ind Inst Met, 2015; 68: 331
[9] Kim J M, Park B K, Jun J H, Shin K, Kim K T, Jung W J. Mater Sci Eng, 2007; A449-451: 326
[10] Zhang J S, Pei L X, Du H W, Liang W, Xu C X, Lu B F.J Alloys Compd, 2008; 453: 309
[11] Bae D H, Lee M H, Kim K T, Kim W T, Kim D H.J Alloys Compd, 2002; 342: 445
[12] Zhang J S, Zhang Y Q, Zhang Y, Xu C X, Wang X M, Yan J.Trans Nonferrous Met Soc China, 2010; 20: 1199
[13] Teng X Y, Liu T, Zhou G R, Liu L Y. Adv Mater Res, 2011; 306-307: 582
[14] Wang X D, Du W B, Wang Z H, Liu K, Li S B.Mater Sci Eng, 2011; A530: 446
[15] Wang R M, Eliezer A, Gutman E M.Mater Sci Eng, 2003; A355: 201
[16] Zhang Z, Couture A, Luo A.Scr Mater, 1998; 39: 45
[17] Ohno M, Mirkovic D, Schmid-Fetzer R.Mater Sci Eng, 2006; A421: 328
[18] Wang J L, Peng Q M, Wu Y M, Wang L M.Trans Nonferrous Met Soc China, 2006; 16(s1): 703
[19] Zheng W C, Li S S, Tang B, Zeng D B.Acta Metall Sin, 2006; 42: 835
[19] (郑伟超, 李双寿, 汤彬, 曾大本. 金属学报, 2006; 42: 835)
[20] Pettersen G, Westengen H, H?ier R, Lohne O.Mater Sci Eng, 1996; A207: 115
[21] Wu G H, Fan Y, Zhai C Q, Ding W J.Acta Metall Sin, 2008; 44: 1247
[21] (吴国华, 樊昱, 翟春泉, 丁文江. 金属学报, 2008; 44: 1247)
[22] Wang J, Zhu X R, Xu Y D, Wang R, Nie J J, Zhang L J.Chin J Nonferrous Met, 2014; 24: 25
[22] (王军, 朱秀荣, 徐永东, 王荣, 聂景江, 张立君. 中国有色金属学报, 2014; 24: 25)
[23] Ohno M, Mirkovic D, Schmid-Fetzer R.Acta Mater, 2006; 54: 3883
[24] Wang Y S, Wang Q D, Ma C J, Ding W J, Zhu Y P.Mater Sci Eng, 2003; A342: 178
[25] Lü Y Z, Wang Q D, Ding W J, Zeng X Q, Zhu Y P.Mater Lett, 2000; 44(5): 265
[26] Maxwell I, Hellawell A.Acta Metall, 1975; 23: 229
[27] Becerra A, Pekguleryuz M.J Mater Res, 2009; 24: 1722
[28] Hou D H, Liang S M, Chen R S, Dong C.Acta Metall Sin, 2014; 50: 601
[28] (侯丹辉, 梁松茂, 陈荣石, 董闯. 金属学报, 2014; 50: 601)
[29] Zhao Z D, Chen Q, Wang Y B, Shu D Y. Mater Sci Eng, 2009; A515: 152
[30] Yuan W, Panigrahi S K, Su J Q, Mishra R S.Scr Mater, 2011; 65: 994
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.