Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1115-1122    DOI: 10.11900/0412.1961.2016.00048
  论文 本期目录 | 过刊浏览 |
AM50-x(Zn, Y)镁合金的显微组织、力学性能与凝固行为*
王峰(),马德志,王志,毛萍莉,刘正
沈阳工业大学材料科学与工程学院, 沈阳 110870
MICROSTRUCTURE, MECHANICAL PROPERTIES AND SOLIDIFICATION BEHAVIOR OF AM50-x(Zn, Y) MAGNESIUM ALLOYS
Feng WANG(),Dezhi MA,Zhi WANG,Pingli MAO,Zheng LIU
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
全文: PDF(1343 KB)   HTML
摘要: 

将Zn和Y元素以原子比为6∶1的形式加入AM50合金中, 并采用金属型铸造成形, 利用OM, SEM, EDS, XRD, 热分析法及拉伸实验研究了AM50-x(Zn, Y) (x=0, 2, 3, 4, 5, 质量分数, %)合金的显微组织、凝固行为及力学性能. 结果表明: 向AM50合金中按原子比为6∶1的形式加入Zn和Y元素后, 组织得到明显细化, 组织中并未形成Mg3Zn6Y准晶相, 而是形成了颗粒状的Al6YMn6相和细小的Al2Y相, 其中Al6YMn6相尺寸随着Zn和Y元素含量的增加而增大; 当x≥3时, 在组织中β相的周围逐渐形成层片状的Φ-Mg21(Zn, Al)17相, 且其数量逐渐增加. 热分析结果表明, Φ-Mg21(Zn, Al)17相约在354 ℃通过包晶反应形成, 其中α-Mg和β相析出温度随着x的增加而降低. 由于Al6YMn6相、Al2Y相和Φ-Mg21(Zn, Al)17相的形成, 使得β相的尺寸减小、数量减少; 当x=4时, 合金组织最为细小, 且合金力学性能达到最优, 其抗拉强度、屈服强度和伸长率分别为206.63 MPa, 92.50 MPa和10.04%.

关键词 镁合金AM50显微组织热分析力学性能    
Abstract

As the lightest metallic structural material, magnesium alloys were widely used in automotive, aerospace, electronic equipment and other fields. Among commercial magnesium alloys, AM series were commonly used due to excellent ductility and energy absorption. However, their relatively poor strength greatly restricted their extended use. In order to improve mechanical properties of AM50 alloy, the Zn and Y elements were added into the AM50 alloy in the form of atomic ratio of 6∶1 by the permanent mold casting. The microstructure, solidification behavior and mechanical properties of AM50-x(Zn, Y) (x=0, 2, 3, 4, 5, mass fraction, %) alloys were investigated by OM, SEM, EDS, XRD, thermal analysis and tensile tests. The results indicated that addition of Zn and Y elements with an atomic ratio of 6∶1 to AM50 alloy, the microstructures were obviously refined, and the quasicrystal I-phase(Mg3Zn6Y) cannot form. In addition, the granular Al6YMn6 phase and fine Al2Y phase were formed in the microstructure, and the size of Al6YMn6 phase increased with increasing the Zn and Y content. The Φ-Mg21(Zn, Al)17 phase with lamellar structure was formed around β phase when x≥3, and its amount increased with increasing the Zn and Y addition. Thermal analysis results show that the Φ-Mg21(Zn, Al)17 phase was formed at 354 ℃ by the peritectic reaction, in which the precipitation temperatures of α-Mg and β phase were decreased with the increase of x content. Due to the formation of Al6YMn6, Al2Y and Φ-Mg21(Zn, Al)17 phases, the size and amount of the β phase was decreased. For AM50-4(Zn, Y) alloy, the microstructure was greatly refined, and the ultimate tensile strength, yield strength and elongation of the alloy reached to the maximum, 206.63 MPa, 92.50 MPa and 10.04%, respectively.

Key wordsmagnesium alloy    AM50    microstructure    thermal analysis    mechanical property
收稿日期: 2016-01-29     
基金资助:* 国家自然科学基金项目51504153, 辽宁省自然科学基金项目201602548以及辽宁省高校创新团队支持计划项目LT2013004资助

引用本文:

王峰,马德志,王志,毛萍莉,刘正. AM50-x(Zn, Y)镁合金的显微组织、力学性能与凝固行为*[J]. 金属学报, 2016, 52(9): 1115-1122.
Feng WANG, Dezhi MA, Zhi WANG, Pingli MAO, Zheng LIU. MICROSTRUCTURE, MECHANICAL PROPERTIES AND SOLIDIFICATION BEHAVIOR OF AM50-x(Zn, Y) MAGNESIUM ALLOYS. Acta Metall Sin, 2016, 52(9): 1115-1122.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2016.00048      或      https://www.ams.org.cn/CN/Y2016/V52/I9/1115

Alloy Al Mn Zn Y Mg
AM50-0(Zn, Y) 5.05 0.28 0.18 - Bal.
AM50-2(Zn, Y) 5.09 0.27 1.71 0.32 Bal.
AM50-3(Zn, Y) 4.95 0.26 2.53 0.52 Bal.
AM50-4(Zn, Y) 4.98 0.28 3.36 0.73 Bal.
AM50-5(Zn, Y) 4.92 0.29 4.23 0.90 Bal.
表1  合金的化学成分
图1  AM50-x(Zn, Y)合金的显微组织
图2  AM50-x(Zn, Y)合金的SEM像及XRD谱
图3  AM50合金的SEM像和EDS分析
图4  AM50-4(Zn, Y)合金的SEM像和EDS分析
图5  AM50-4(Zn, Y)合金的SEM像和各元素的面扫描图
图6  AM50-x (Zn, Y)合金的热分析结果
表2  热分析曲线中对应的关键温度
图7  AM50-x(Zn, Y)合金的室温拉伸性能
[1] Agnew S R, Nie J F.Scr Mater, 2010; 63: 671
[2] Easton M, Beer A, Barnett M, Davies C, Dunlop G, Durandet Y, Blacket S, Hilditch T, Beggs P.JOM, 2008; 60(11): 57
[3] Fechner D, Hort N, Blawert C, Dieringa H, St?rmer M, Kainer K U. J Mater Sci, 2012; 47: 5461
[4] Kondori B, Mahmudi R.Mater Sci Eng, 2010; A527: 2014
[5] ünal M.Int J Cast Met Res, 2014; 27(2): 80
[6] Wang Q D, Lin J B, Liu M P, Ding W J.Int J Mater Res, 2008; 99: 761
[7] Wang J L, Yang J, Wu Y M, Zhang H J, Wang L M.Mater Sci Eng, 2008; A472: 332
[8] Singh L K, Srinivasan A, Pillai U T S, Joseph M A, Pai B C.Trans Ind Inst Met, 2015; 68: 331
[9] Kim J M, Park B K, Jun J H, Shin K, Kim K T, Jung W J. Mater Sci Eng, 2007; A449-451: 326
[10] Zhang J S, Pei L X, Du H W, Liang W, Xu C X, Lu B F.J Alloys Compd, 2008; 453: 309
[11] Bae D H, Lee M H, Kim K T, Kim W T, Kim D H.J Alloys Compd, 2002; 342: 445
[12] Zhang J S, Zhang Y Q, Zhang Y, Xu C X, Wang X M, Yan J.Trans Nonferrous Met Soc China, 2010; 20: 1199
[13] Teng X Y, Liu T, Zhou G R, Liu L Y. Adv Mater Res, 2011; 306-307: 582
[14] Wang X D, Du W B, Wang Z H, Liu K, Li S B.Mater Sci Eng, 2011; A530: 446
[15] Wang R M, Eliezer A, Gutman E M.Mater Sci Eng, 2003; A355: 201
[16] Zhang Z, Couture A, Luo A.Scr Mater, 1998; 39: 45
[17] Ohno M, Mirkovic D, Schmid-Fetzer R.Mater Sci Eng, 2006; A421: 328
[18] Wang J L, Peng Q M, Wu Y M, Wang L M.Trans Nonferrous Met Soc China, 2006; 16(s1): 703
[19] Zheng W C, Li S S, Tang B, Zeng D B.Acta Metall Sin, 2006; 42: 835
[19] (郑伟超, 李双寿, 汤彬, 曾大本. 金属学报, 2006; 42: 835)
[20] Pettersen G, Westengen H, H?ier R, Lohne O.Mater Sci Eng, 1996; A207: 115
[21] Wu G H, Fan Y, Zhai C Q, Ding W J.Acta Metall Sin, 2008; 44: 1247
[21] (吴国华, 樊昱, 翟春泉, 丁文江. 金属学报, 2008; 44: 1247)
[22] Wang J, Zhu X R, Xu Y D, Wang R, Nie J J, Zhang L J.Chin J Nonferrous Met, 2014; 24: 25
[22] (王军, 朱秀荣, 徐永东, 王荣, 聂景江, 张立君. 中国有色金属学报, 2014; 24: 25)
[23] Ohno M, Mirkovic D, Schmid-Fetzer R.Acta Mater, 2006; 54: 3883
[24] Wang Y S, Wang Q D, Ma C J, Ding W J, Zhu Y P.Mater Sci Eng, 2003; A342: 178
[25] Lü Y Z, Wang Q D, Ding W J, Zeng X Q, Zhu Y P.Mater Lett, 2000; 44(5): 265
[26] Maxwell I, Hellawell A.Acta Metall, 1975; 23: 229
[27] Becerra A, Pekguleryuz M.J Mater Res, 2009; 24: 1722
[28] Hou D H, Liang S M, Chen R S, Dong C.Acta Metall Sin, 2014; 50: 601
[28] (侯丹辉, 梁松茂, 陈荣石, 董闯. 金属学报, 2014; 50: 601)
[29] Zhao Z D, Chen Q, Wang Y B, Shu D Y. Mater Sci Eng, 2009; A515: 152
[30] Yuan W, Panigrahi S K, Su J Q, Mishra R S.Scr Mater, 2011; 65: 994
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[4] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[5] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[6] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[7] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[10] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[11] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[12] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[13] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[14] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[15] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.