Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1153-1162    DOI: 10.11900/0412.1961.2015.00429
  本期目录 | 过刊浏览 |
先进镍基单晶高温合金组织稳定性及力学行为的研究进展
金涛(),周亦胄,王新广,刘金来,孙晓峰,胡壮麒
RESEARCH PROCESS ON MICROSTRUCTURAL STABILITY AND MECHANICAL BEHAVIOR OF ADVANCED Ni-BASED SINGLE CRYSTAL SUPERALLOYS
Tao JIN(),Yizhou ZHOU,Xinguang WANG,Jinlai LIU,Xiaofeng SUN,Zhuangqi HU
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

金涛,周亦胄,王新广,刘金来,孙晓峰,胡壮麒. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51(10): 1153-1162.
Tao JIN, Yizhou ZHOU, Xinguang WANG, Jinlai LIU, Xiaofeng SUN, Zhuangqi HU. RESEARCH PROCESS ON MICROSTRUCTURAL STABILITY AND MECHANICAL BEHAVIOR OF ADVANCED Ni-BASED SINGLE CRYSTAL SUPERALLOYS[J]. Acta Metall Sin, 2015, 51(10): 1153-1162.

全文: PDF(3697 KB)   HTML
摘要: 

从先进镍基单晶高温合金的微观组织稳定性和力学行为2个方面, 简要介绍了γ’相筏化、TCP相析出、高温和超高温低应力蠕变以及低周和热机械疲劳的主要研究进展. 合金元素Ru的添加提高了合金的高温低应力蠕变寿命, 但也间接促进了拓扑倒置现象的发生. 随时效时间的延长和时效温度的升高, m相中的难熔元素含量都会明显增加; 随着外加应力的增加, m相的析出量增加, 压应力则相反. m相在析出的过程中会形成大量的面缺陷, 这些缺陷会促进其它TCP相如P相和R相的形核. 在高温低应力蠕变的过程中, 镍基单晶高温合金中出现另一种重要的a<010>超位错, 通过滑移和攀移相结合的方式在γ’相中缓慢运动. 在超高温蠕变条件下, 开始出现一个蠕变加速的孕育期, 这与γ基体在超高温下不同程度的宽化有关. Ru的添加显著降低了合金的层错能, 在低周疲劳的过程中可引起层错贯穿γ/γ’界面、a/6<112> Shockley拖后位错切入γ’相等复杂变形机制. 在热机械疲劳的过程中, 裂纹萌生的位置、微观结构的变化以及抗氧化性能都会影响镍基单晶高温合金的寿命.

关键词 镍基单晶高温合金组织稳定性力学行为    
Abstract

Ni-based single crystal superalloys have been widely used to produce turbine blades for advanced aero-engines because of the super temperature-related microstructural stability and comprehensive mechanical properties. However, due to effects of the high temperature and complicated stresses in service, the microstructures of superalloys might gradually evolve and fail in different modes. The present paper reviews the progress of microstructural stability and mechanical behavior including the γ’ phase rafting, TCP phase precipitation, high temperature creep, low cycle fatigue and thermomechanical fatigue of single crystal superalloys. The addition of Ru improves the creep life of superalloys, but also indirectly promotes the occurrence of “topological inversion”. On the other hand, with the increase of aging temperature and time, the contents of refractory elements in m phase rise significantly. With the increase of applied tension stress, more m phase precipitate from the γ matrix, whereas inverse tendency is shown under compression stress. Numerous planar defects are formed during precipitation of m phase, and these defects promote the nucleation of P and R phases. During high temperature and low stress creep, an important dislocation a<010> superdislocation is observed, which moves in the γ’ phase slowly by a combination of slide and climb. Under very high temperature, incubation with accelerating creep rate occurs before the primary stage, which relates to the extending process of the γ width. At last, the stacking fault energy is significantly reduced after Ru additions, and thus a series of complex deformation mechanisms occur during low cycle fatigue, e.g. stacking faults penetrating γ/γ’ interface, trailing a/6<112> Shockley dislocations shearing into the γ’ phase. During thermomechanical fatigue, the life of superalloys is influenced by the site of crack initiation, microstructural evolution and oxidation resistance.

Key wordsNi-based single crystal superalloy    microstructural stability    mechanical behavior
    
基金资助:* 国家高技术研究发展计划项目2014AA041701, 国家自然科学基金项目51331005和11332010资助
图1  高温合金承温能力的发展历程[1]
图2  典型镍基单晶高温合金热处理后的SEM像[10]和TEM像[11]
TCP phase System Space Atom per Coordination polyhedra Lattice
group cell CN12 CN14 CN15 CN16 parameter
nm
s Tetragonal P42/mnm 30 10 16 4 0 a=0.912
c=0.472
m Rhombohedral R-3m 13 7 2 2 2 a=0.476
c=2.583
P Orthorhombic Pnma 56 24 20 8 4 a=1.689
b=0.475
c=0.907
R Rhombohedral R-3 53 27 12 6 8 a=1.093
c=1.934
表1  s, m, P和R相的晶体学参数[18,19]
图3  含3%Ru的高Re单晶高温合金在1100 ℃长期时效1000 h和无Ru合金在1100 ℃, 150 MPa蠕变断裂后析出的TCP相形貌及其相应的选区衍射斑点[26]
图4  μ相分别与P相和R相的共生[26]
图5  含3%Ru镍基单晶高温合金在900 ℃低周疲劳之后的微观组态[44]
[1] Reed R C. The Superalloys Fundamentals and Applications. Cambridge: Cambridge University Press, 2006: 19
[2] Hu Z Q, Liu L R, Jin T, Sun X F. Aeroengine, 2005; 31(3): 1 (胡壮麒, 刘丽荣, 金 涛, 孙晓峰. 航空发动机, 2005; 31(3): 1)
[3] Sun X F, Jin T, Zhou Y Z, Hu Z Q. Mater China, 2012; 31(12): 1 (孙晓峰, 金 涛, 周亦胄, 胡壮麒. 中国材料进展, 2012; 31(12): 1)
[4] Darolia R, Lahrman D F, Field R D, Sisson R. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1988, Champion, PA: TMS, 1988: 255
[5] Tan X P, Liu J L, Jin T, Hu Z Q, Hong H U, Choi B G, Kim I S, Jo C Y. Philos Mag Lett, 2012; 92: 556
[6] Tan X P, Liu J L, Jin T, Hu Z Q, Hong H U, Choi B G, Kim I S, Yoo Y S, Jo C Y. Metall Mater Trans, 2012; 43A: 3608
[7] Tan X P, Hong H U, Choi B G, Kim I S, Jo C Y, Jin T, Hu Z Q. J Mater Sci, 2013; 48: 1085
[8] Argence D, Vernault C, Desvallées Y, Fournier D. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Champion, PA: TMS, 2000: 829
[9] Zhang J X, Koizumi Y, Kobayashi T, Murakumo T, Harada H. Metall Mater Trans, 2004; 35A: 1911
[10] Wang X G, Liu J L, Jin T, Sun X F. Mater Sci Eng, 2014; A598: 154
[11] Wang X G, Liu J L, Jin T, Sun X F, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Mater Des, 2015; 67: 543
[12] Murakumo T, Kobayashi T, Koizumi Y, Harada H. Acta Mater, 2004; 52: 3737
[13] Mughrabi H. Mater Sci Technol, 2009; 25: 191
[14] Pollock T M, Argon A S. Acta Metall, 1994; 42: 1859
[15] Wang X G. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2015 (王新广. 中国科学院金属研究所博士学位论文, 沈阳, 2015)
[16] Tan X P, Liu J L, Jin T, Hu Z Q, Hong H U, Choi B G, Kim I S, Jo C Y. Mater Sci Eng, 2013; A580: 21
[17] Wang X G, Liu J L, Jin T, Sun X F, Zhou Y Z, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Adv Eng Mater, 2015; 17: 1034
[18] Rae C M F, Reed R C. Acta Mater, 2001; 49: 4113
[19] Seiser B, Drautz R, Pettifor D G. Acta Mater, 2011; 59: 749
[20] Yeh A C, Tin S. Metall Mater Trans, 2006; 37A: 2621
[21] Hobbs R A, Zhang L, Rae C M F, Tin S. Metall Mater Trans, 2008; 39A: 1014
[22] Ofori A P, Humphreys C J, Tin S, Jones C N. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Champion, PA: TMS, 2004: 787
[23] Sato A, Harada H, Yokokawa T, Murakumo T, Koizumi Y, Kobayashi T, Imai H. Scr Mater, 2006; 54: 1679
[24] Gao S, Zhou Y Z, Li C F, Cui J P, Liu Z Q, Jin T. J Alloys Compd, 2014; 610: 589
[25] Cheng K Y. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2009 (成魁宇. 中国科学院金属研究所博士学位论文, 沈阳, 2009)
[26] Tan X P. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012 (谭喜鹏. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[27] Luo Y P. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2014 (罗银屏. 中国科学院金属研究所硕士学位论文, 沈阳, 2014)
[28] Chen J Y, Feng Q, Sun Z Q. Scr Mater, 2010; 63: 795
[29] Pollock T M, Argon A S. Acta Metall, 1992; 40: 1
[30] Field R D, Pollock T M, Murphy W H. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Champion, PA: TMS, 1992: 557
[31] Zhang J X, Murakumo T, Koizumi Y, Kobayashi T, Harada H, Masaki S. Metall Mater Trans, 2002; 33A: 3741
[32] Huang M, Cheng Z Y, Xiong J C, Li J R, Hu J Q, Liu Z L, Zhu J. Acta Mater, 2014; 76: 294
[33] Gabrisch H, Mukherji D. Acta Mater, 2000; 48: 3157
[34] Wang X G, Liu J L, Jin T, Sun X F, Zhou Y Z, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Mater Sci Eng, 2015; A626: 406
[35] Eggeler G, Dlouhy A. Acta Mater, 1997; 45: 4251
[36] Srinivasan R, Eggeler G F, Mills M J. Acta Mater, 2000; 48: 4867
[37] Zhang J X, Murakumo T, Koizumi Y, Kobayashi T, Harada H. Acta Mater, 2003; 51: 5073
[38] Reed R C, Cox D C, Rae C M F. Mater Sci Eng, 2007; A448: 88
[39] le Graverend J B, Cormier J, Jouiad M, Gallerneau F, Paulmier P, Hanmon F. Mater Sci Eng, 2010; A527: 5295
[40] Caron P. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Champion, PA: TMS, 2000: 737
[41] Li Q Q. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012 (李芹芹. 中国科学院金属研究所硕士学位论文, 沈阳, 2012)
[42] Li P, Li Q Q, Jin T, Zhou Y Z, Li J G, Sun X F, Zhang Z F. Int J Fatigue, 2014; 63: 137
[43] Auerswald J, Mukherji D, Chen W, Wahi R P. Z Metallkd, 1997; 88: 652
[44] Wang X G, Liu J L, Jin T, Sun X F, Zhou Y Z, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Scr Mater, 2015; 99: 57
[45] Zhang X. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2006 (张 炫. 中国科学院金属研究所博士学位论文, 沈阳, 2006)
[46] Gabb T P, Welsch G E. Scr Metall, 1986; 20: 1049
[47] Gabb T P, Welsch G E. Acta Metall, 1989; 37: 2507
[48] Milligan W W, Jayaraman N. Mater Sci Eng, 1986; 82: 127
[49] Zhou H, Ro Y, Harada H, Aoki Y, Arai M. Mater Sci Eng, 2004; A381: 20
[50] Han G M. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010 (韩国明. 中国科学院金属研究所硕士学位论文, 沈阳, 2010)
[51] Kraft S, Zauter R, Mughrabi H. Fatigue Fract Eng Mater Struct, 1993; 16: 237
[52] Liu F, Wang Z G, Ai S H, Wang Y C, Sun X F, Jin T, Guan H R. Scr Mater, 2003; 48: 1265
[53] Zhang J X, Harada H, Ro Y, Koizumi Y, Kobayashi T. Acta Mater, 2008; 56: 2975
[54] Moverare J J, Johansson S, Reed R R. Acta Mater, 2009; 57: 2266
[55] Zhang J. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2006 (张 剑. 中国科学院金属研究所博士学位论文, 沈阳, 2006)
[56] Xu Y B. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2013 (徐砚博. 中国科学院金属研究所硕士学位论文, 沈阳, 2013)
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[3] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[4] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[5] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[6] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[7] 蒋敏强, 高洋. 金属玻璃的结构年轻化及其对力学行为的影响[J]. 金属学报, 2021, 57(4): 425-438.
[8] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[9] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[10] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[11] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[12] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[13] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[14] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[15] 郭静, 李金国, 刘纪德, 黄举, 孟祥斌, 孙晓峰. 低偏析异质籽晶制备单晶高温合金的籽晶熔合区形成机制研究[J]. 金属学报, 2018, 54(3): 419-427.