Please wait a minute...
金属学报  2018, Vol. 54 Issue (4): 591-602    DOI: 10.11900/0412.1961.2017.00334
  本期目录 | 过刊浏览 |
基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为
张宇1, 王清1, 董红刚1, 董闯1(), 张洪宇2, 孙晓峰2
1 大连理工大学三束材料改性教育部重点实验室 大连 116024
2 中国科学院金属研究所 沈阳 110016
Nickel-Based Single-Crystal Superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) Designed by Cluster-Plus-Glue-Atom Model and Their 1000 h Long-Term Ageing Behavior at 900 ℃
Yu ZHANG1, Qing WANG1, Honggang DONG1, Chuang DONG1(), Hongyu ZHANG2, Xiaofeng SUN2
1 Key laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(6577 KB)   HTML
摘要: 

基于团簇加连接原子模型,通过Ta-Ti和Ni-Co互换对第一代镍基单晶高温合金进行成分设计,并对所设计的A组和B组成分系列进行选晶法单晶制备、初熔温度测试、标准热处理和900 ℃、1000 h长期时效。其中,A组为[Al-Ni11Co1](Al1TaxTi0.5-xCr1W0.25Mo0.25),x=0、0.25和0.5 (对应Ta和Ti的质量分数分别为0Ta-2.65Ti、4.82Ta-1.26Ti和9.32Ta-0Ti);B组为[Al-Ni12-yCoy](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25),y=1.5、1.75、2和2.5 (对应的Co质量分数分别为9.43Co、11Co、12.57Co和15.71Co)。在A组合金中,随Ta的增加(Ti的降低),初熔温度升高,均超过1330 ℃,其中9.32Ta-0Ti最高,在1335~1340 ℃之间;标准热处理后γ/γ′负错配度从-0.262%减小到-0.247%;长期时效中γ′的粗化得到抑制,9.32Ta-0Ti的粗化速率最低 (K=5.6×10-5 μm3/h)。对于B组合金,Co含量变化未明显改变初熔温度和长期时效γ′粗化速率,但初熔温度同样超过1330 ℃,Co作用主要体现在提高标准热处理后的γ′体积分数(约69%)和减小γ′尺寸(约0.55 μm)。2组合金的粗化速率均接近三代单晶合金水平(K≈(2.08~3.82)×10-5 μm3/h)。

关键词 镍基单晶高温合金团簇加连接原子模型长期时效错配度γ′粗化速率;    
Abstract

It has been pointed out recently that the compositions of industrial alloys are originated from cluster-plus-glue-atom structure units in solid solutions. Specifically for nickel-based superalloys, after properly grouping the alloying elements into Al, Ni-like (, including Ni, Co, Fe, Re, Ru and Ir), γ′γ, including Ta, Ti, V, Nb), and γ-forming Cr-like (γ, including Cr, Mo and W), the optimal formula for single-crystal superalloys has been established [Al-12](Al1γ0.5γ1.5). In this work, the first generation single-crystal superalloys were investigated on the basis of the proposed formula, by using =(Ni and Co), γ=(Ta and Ti), and γ=(Cr, Mo and W). Two series of alloys were designed, formulated respectively as group A: [Al-Ni11Co1](Al1TaxTi0.5-xCr1W0.25Mo0.25), with x=0, 0.25 and 0.5 (the corresponding mass fractions of Ta and Ti are respectively 0Ta-2.65Ti, 4.82Ta-1.26Ti and 9.32Ta-0Ti), and group B: [Al-Ni12-yCoy](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25), with y=1.5, 1.75, 2 and 2.5 (the corresponding mass fractions of Co are respectively 9.43Co, 11Co, 12.57Co and 15.71Co). The single-crystal superalloys were prepared using selector technique. And then they underwent the following tests of incipient melting, standard heat treatment and 1000 h long term ageing at 900 ℃. It is found that: (1) In group A, with increasing Ta content (decreasing Ti), all the incipient melting temperatures are increased to above 1330 ℃, and to the highest value is between 1335 ℃ and 1340 ℃ for alloy 9.32Ta-0Ti; the γ/γ′ lattice negative misfits after standard heat treatment are reduced from -0.262% (0Ta-2.65Ti) to -0.247% (9.32Ta-0Ti); the γ′ coarsening tendency after long-term ageing is deduced, and alloy 9.32Ta-0Ti has the lowest coarsening rate (K=5.6×10-5 μm3/h). (2) In group B, the Co content does not influence the incipient melting temperature (always above 1330 ℃) and the coarsening rate of γ′ after long-term ageing. The major role of Co is to increase the mean size of the γ′ precipitates to about 0.55 μm and the γ′ volume fraction to about 69% after the standard heat treatment. These two groups of alloys have their γ′ coarsening rates approaching the level of third-generation single-crystal superalloys (K≈(2.08~3.82)×10-5 μm3/h).

Key wordsnickel-based single-crystal superalloy    cluster-plus-glue-atom model    long-term ageing    lattice misfit    γ′ coarsening rate;
收稿日期: 2017-08-14     
ZTFLH:  TG113  
基金资助:国家重点科研发展计划项目No.2016YFB0701401及国家自然科学基金项目No.11674045
作者简介:

作者简介 张 宇,男,1985年生,博士生

引用本文:

张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
Yu ZHANG, Qing WANG, Honggang DONG, Chuang DONG, Hongyu ZHANG, Xiaofeng SUN. Nickel-Based Single-Crystal Superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) Designed by Cluster-Plus-Glue-Atom Model and Their 1000 h Long-Term Ageing Behavior at 900 ℃. Acta Metall Sin, 2018, 54(4): 591-602.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00334      或      https://www.ams.org.cn/CN/Y2018/V54/I4/591

图1  fcc-CN12团簇([Al-Ni12]团簇)示意图
Group Alloy Cluster formula Alloy / (mass fraction / %)
Ta Ti Co Al Cr Mo W Ni
A 0Ta-2.65Ti [Al-Ni11Co1](Al1Ti0.5Cr1W0.25Mo0.25)
x=0,ρ=8.18 gcm-3
N 0 2.65 6.52 5.97 5.75 2.65 5.08 Bal.






















M 0 2.35 6.62 5.49 5.43 2.63 4.96
E -0.30 0.10 -0.48 -0.32 -0.02 -0.12
4.82Ta-1.28Ti [Al-Ni11Co1](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25)
x=0.25,ρ=8.44 gcm-3
N 4.82 1.28 6.29 5.76 5.55 2.56 4.90
M 4.77 1.08 6.17 5.46 5.29 2.73 4.96
E -0.05 -0.20 -0.12 -0.30 -0.26 0.17 0.06
9.32Ta-0Ti [Al-Ni11Co1](Al1Ta0.5Cr1W0.25Mo0.25)
x=0.5,ρ=8.72 gcm-3
N 9.32 0 6.07 5.56 5.36 2.47 4.73
M 9.11 0 6.00 5.28 5.17 2.45 4.77
E -0.21 -0.07 -0.28 -0.19 -0.02 0.04
B 9.43Co [Al-Ni10.5Co1.5](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25)
y=1.5,ρ=8.47 gcm-3
N 4.82 1.28 9.43 5.75 5.54 2.56 4.90
M 4.68 1.17 9.36 5.57 5.43 2.64 4.91
E -0.14 -0.11 -0.07 -0.18 -0.11 0.08 0.01
11Co [Al-Ni10.25Co1.75](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25)
y=1.75,ρ=8.45 gcm-3
N 4.82 1.28 11.00 5.75 5.54 2.56 4.90
M 4.70 1.17 10.92 5.54 5.41 2.64 4.89
E -0.12 -0.11 -0.08 -0.21 -0.13 0.08 -0.01
12.57Co [Al-Ni10Co2](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25)
y=2,ρ=8.46 gcm-3
N 4.82 1.28 12.57 5.75 5.54 2.56 4.90
M 4.72 1.17 12.48 5.54 5.38 2.64 4.88
E -0.10 -0.11 -0.09 -0.21 -0.16 0.08 -0.02
15.71Co [Al-Ni9.5Co2.5](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25)
y=2.5,ρ=8.44 gcm-3
N 4.82 1.28 15.71 5.75 5.54 2.56 4.90
M 4.77 1.08 15.68 5.52 5.34 2.72 4.72
E -0.05 -0.20 -0.03 -0.23 -0.20 0.16 -0.18
表1  合金的名义成分(N)、母合金XRF测试结果(M)、误差(E)和单晶密度(ρ)
图2  在最低初熔温度时样品的SEM像
图3  2组合金样品经标准热处理和长期时效后的SEM像
图4  标准热处理和900 ℃长期时效样品的γ′分析
图6  源自d电子理论的合金元素矢量图,显示元素的分类特性
图5  A组样品的XRD结果(标准热处理)和SEM像(1050 ℃、120 MPa持久实验)
[1] Caron P, Khan T.Evolution of Ni-based superalloys for single crystal gas turbine blade applications[J]. Aerosp. Sci. Technol., 1999, 3: 513
[2] Reed R C.The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 19
[3] Jin T, Zhou Y Z, Wang X G, et al.Research process on microstructural stability and mechanical behavior of advanced Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2015, 51: 1153(金涛, 周亦胄, 王新广等. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51: 1153)
[4] Wang B, Zhang J, Huang T W, et al.Effect of Co on microstructural stability of the third generation Ni-based single crystal superalloys[J]. J. Mater. Res., 2016, 31: 1328
[5] Wang X G, Li J R, Yu J, et al.Tensile anisotropy of single crystal superalloy DD9[J]. Acta Metall. Sin., 2015, 51: 1253(王效光, 李嘉荣, 喻健等. DD9单晶高温合金拉伸性能各向异性[J]. 金属学报, 2015, 51: 1253)
[6] Wang B, Zhang J, Pan X J, et al.Effects of W on microstructural stability of the third generation Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2017, 53: 298(王博, 张军, 潘雪娇等. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53: 298)
[7] Li J R, Xiong J C, Tang D Z.Advanced High Temperature Structural Materials and Technology (I) [M]. Beijing: National Defend Industry Press, 2012: 3(李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术(上) [M]. 北京: 国防工业出版社, 2012: 3)
[8] Zheng Y R, Zhang D T.Color Metallographic Investigation of Superalloys and Steels [M]. Beijing: National Defense Industry Press, 1999: 10(郑运荣, 张德堂. 高温合金与钢的彩色金相研究 [M]. 北京: 国防工业出版社, 1999: 10)
[9] Goerler J V, Lopez-Galilea I, Roncery L M, et al.Topological phase inversion after long-term thermal exposure of nickel-base superalloys: Experiment and phase-field simulation[J]. Acta Mater., 2017, 124: 151
[10] Sabol G P, Stickler R.Microstructure of nickel-based superalloys[J]. Phys. Status Solidi, 1969, 35: 11
[11] Betteridge W, Shaw S W K. Development of superalloys[J]. Mater. Sci. Technol., 1987, 3: 682
[12] Academic Committee of the Superalloys, CSM. China Superalloys Handbook (I) [M]. Beijing: China Zhijian Publishing House, Standards Press of China, 2012: 1(中国金属学会高温材料分会. 中国高温合金手册(上) [M]. 北京: 中国质检出版社, 中国标准出版社, 2012: 1)
[13] Li J R, Xiong J C, Tang D Z.Advanced High Temperature Structural Materials and Technology (II) [M]. Beijing: National Defense Industry Press, 2012: 1(李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术(下) [M]. 北京: 国防工业出版社, 2012: 1)
[14] Jarrett R N, Collier J P, Tien J K.Effects of cobalt on the hot workability of nickel-base superalloys [A]. Superalloys 1984[C]. Champion, PA: TMS, 1984: 455
[15] Ye J.The Nickel-Based Superalloys of the United States of America [M]. Beijing: Science Press, 1978: 48(冶军. 美国镍基高温合金 [M]. 北京: 科学出版社, 1978: 48)
[16] Academic Committee of the Superalloys, CSM. China Superalloys Handbook (II) [M]. Beijing: China Zhijian Publishing House, Standards Press of China, 2012: 1(中国金属学会高温材料分会. 中国高温合金手册(下) [M]. 北京: 中国质检出版社, 中国标准出版社, 2012: 1)
[17] Reed R C, Tao T, Warnken N.Alloys-by-design: Application to nickel-based single crystal superalloys[J]. Acta Mater., 2009, 57: 5898
[18] Nathal M V, Maier R D, Ebert L J.The Influence of cobalt on the microstructure of the nickel-base superalloy MAR-M247[J]. Metall. Trans., 1982, 13A: 1775
[19] Strangman T E, Hoppin III G S, Phipps C M, et al. Development of exothermically cast single-crystal Mar-M 247 and derivative alloys [A]. Proceedings of the 4th International Symposium on Superalloys[C]. Champion, PA: Metallurgical Society of AIME and American Society for Metals, 1980: 225
[20] Bürgel R, Grossmann J, Lüsebrink O, et al.Development of a new alloy for directional solidification of large industrial gas turbine blades [A]. Superalloys 2004[C]. Champion, PA: TMS, 2004: 25
[21] Walston W S, O'Hara K S, Ross E W, et al. René N6: Third generation single crystal superalloy [A]. Superalloys 1996[C]. Warrendale, PA: TMS, 1996: 27
[22] Erickson G L.The development of the CMSX-11B and CMSX-11C alloys for industrial gas turbine application [A]. Superalloys 1996[C]. Warrendale, PA: TMS, 1996: 45
[23] Erickson G L.The development and application of CMSX(R)-10 [A]. Superalloys 1996[C]. Warrendale, PA: TMS, 1996: 35
[24] Walston S, Cetel A, MacKay R, et al. Joint development of a fourth generation single crystal superalloy [A]. Proceedings of the 10th International Symposium on Superalloys[C]. Champion, PA: TMS, 2004: 15
[25] Fu C L, Reed R, Janotti A, et al.On the diffusion of alloying elements in the nickel-base superalloys [A]. Superalloys 2004[C]. Champion, PA: TMS, 2004: 867
[26] Wang W Z, Jin T, Zhao N R, et al.Effect of cobalt on chemical segregation and solution process in Re-containing single crystal superalloys[J]. Trans. Nonferrous Met. Soc. China, 2006, 16(suppl.3): 1978
[27] Murakami H, Yamagata T, Harada H, et al.The influence of Co on creep deformation anisotropy in Ni-base single crystal superalloys at intermediate temperatures[J]. Mater. Sci. Eng., 1997, A223: 54
[28] Caldwell E C, Feda F J, Fuchs G E.Segregation of elements in high refractory content single crystal nickel based superalloys [A]. Superalloys 2004[C]. Champion, PA: TMS, 2004: 811
[29] Zhang J.Effect of Ti and Ta on hot cracking susceptibility of directionally solidified Ni-based superalloy IN792[J]. Scr. Mater., 2003, 48: 677
[30] Zhang J, Singer R F.Hot tearing of nickel-based superalloys during directional solidification[J]. Acta Mater., 2002, 50: 1869
[31] Hultgren R, Desai P D, Hawkins D T, et al.Selected Values of the Thermodynamic Properties of the Elements[M]. Metals Park, Ohio: American Society for Metals, 1973: 126
[32] Sato A, Harada H, Yeh A C, et al.A 5th generation SC superalloy with balanced high temperature properties and processability [A]. Superalloys 2008[C]. Champion, PA: TMS, 2008: 131
[33] Kawagishi K, Yeh A C, Yokokawa T, et al.Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238 [A]. Superalloy 2012[C]. Champion, PA: TMS, 2012: 189
[34] Dong C, Wang Q, Qiang J B, et al.From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses[J]. J. Phys., 2007, 40D: R273
[35] Hong H L, Wang Q, Dong C, et al.Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys[J]. Sci. Rep., 2014, 4: 7065
[36] Jiang B B, Wang Q, Dong C.A cluster-formula composition design approach based on the local short-range order in solid solution structure[J]. Acta Phys. Sin., 2017, 66: 026102(姜贝贝, 王清, 董闯. 基于固溶体短程序结构的团簇式合金成分设计方法[J]. 物理学报, 2017, 66: 026102)
[37] Qian S N, Dong C.Composition formulas for Mg-Al industrial alloy specifications[J]. Acta Phys. Sin., 2017, 66: 136103(钱圣男, 董闯. Mg-Al系工业合金牌号的成分式解析[J]. 物理学报, 2017, 66: 136103)
[38] Wang Q, Zha Q F, Liu E X, et al.Composition design of high-strength martensitic precipitation hardening stainless steels based on a cluster model[J]. Acta Metall. Sin., 2012, 48: 1201(王清, 查钱锋, 刘恩雪等. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计[J]. 金属学报, 2012, 48: 1201)
[39] Wen D H, Jiang B B, Wang Q, et al.Influences of Mo/Zr minor-alloying on the phase precipitation behavior in modified 310S austenitic stainless steels at high temperatures[J]. Mater. Des., 2017, 128: 34
[40] Wang Q, Ji C J, Wang Y M, et al.β-Ti alloys with low Young's moduli interpreted by cluster-plus-glue-atom model[J]. Metall. Mater. Trans., 2013, 44A: 1872
[41] Pang C, Wang Q, Zhang R Q, et al.β Zr-Nb-Ti-Mo-Sn alloys with low Young?s modulus and low magnetic susceptibility optimized via a cluster-plus-glue-atom model[J]. Mater. Sci. Eng., 2015, A626: 369
[42] Wang Q, Ma Y, Jiang B B, et al.A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties[J]. Scr. Mater., 2016, 120: 85
[43] Ma Y, Jiang B B, Li C L, et al.The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys[J]. Metals, 2017, 7: 57
[44] Mughrabi H.Microstructural aspects of high temperature deformation of monocrystalline nickel base superalloys: Some open problems[J]. Mater. Sci. Technol., 2009, 25: 191
[45] Mughrabi H.The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys—With special reference to the new γ′-hardened cobalt-base superalloys[J]. Acta Mater., 2014, 81: 21
[46] Yu J J, Wang Q, Li X N, et al.Composition design of nickel-base superalloys based on cluster structural model[J]. Trans. Mater. Heat Treat., 2013, 34(8): 184(于晶晶, 王清, 李晓娜等. 基于团簇结构模型的镍基高温合金成分设计[J]. 材料热处理学报, 2013, 34(8): 184)
[47] Dong D D, Zhang S, Wang Z R, et al.Nearest-neighbor coordination polyhedral clusters in metallic phases defined using Friedel oscillation and atomic dense packing[J]. J. Appl. Crystallogr., 2015, 48: 2002
[48] Takeuchi A, Inoue A.Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Mater. Trans, 2005, 46: 2817
[49] Qin G Y.Quantitative Metallography [M]. Chengdu: Sichuan Science and Technology Press, 1987: 5(秦国友. 定量金相[M]. 成都: 四川科学技术出版社, 1987: 5)
[50] Vander Voort G F. Metallography Principles and Practice[M]. New York: McGraw-Hill Book Company, 1984: 426
[51] Li Z M, Xia Z J, Qin G Y.Image analysing techniques for quantitative metalography[J]. Opto-Elec. Eng., 1995, 22(4): 46(李志敏, 夏志坚, 秦国友. 定量金相的图象分析技术[J]. 光电工程. 1995, 22(4): 46)
[52] Wang W Z, Jin T, Liu J L, et al.Role of Re and Co on microstructures and γ′ coarsening in single crystal superalloys[J]. Mater. Sci. Eng., 2008, A479: 148
[53] Ardell A J.The effect of volume fraction on particle coarsening: Theoretical considerations[J]. Acta Metall., 1972, 20: 61
[54] Murata Y, Miyazaki S, Morinaga M, et al.Hot corrosion resistant and high strength nickel-based single crystal and directionally-solidified superalloys developed by the d-electrons concept [A]. Superalloys 1996[C]. Warrendale, PA: TMS, 1996: 61
[55] Carroll L J, Feng Q, Mansfield J F, et al.Elemental partitioning in Ru-containing nickel-base single crystal superalloys[J]. Mater. Sci. Eng., 2007, A457: 292
[56] Ochial S, Oya Y, Suzuki T.Alloying behaviour of Ni3Al, Ni3Ga, Ni3Si and Ni3Ge[J]. Acta Metall., 1984, 32: 289
[57] Morinaga M, Yukawa N, Adachi H.Alloying effect on the electronic structure of Ni3Al (γ′)[J]. J. Phys. Soc. Jpn., 1984, 53: 653
[58] Mishima Y, Ochiai S, Suzuki T.Lattice parameters of Ni(γ), Ni3Al(γ′) and Ni3Ga(γ′) solid solutions with additions of transition and B-subgroup elements[J]. Acta Metall., 1985, 33: 1161
[59] Pollock T M, Argon A S.Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates[J]. Acta Metall. Mater., 1994, 42: 1859
[60] Caron P.High γ′ solvus new generation nickel-based superalloys for single crystal turbine blade applications [A]. Superalloys 2000[C]. Champion, PA: TMS, 2000: 737
[1] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[2] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[3] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[4] 郭静, 李金国, 刘纪德, 黄举, 孟祥斌, 孙晓峰. 低偏析异质籽晶制备单晶高温合金的籽晶熔合区形成机制研究[J]. 金属学报, 2018, 54(3): 419-427.
[5] 董闯, 董丹丹, 王清. 固溶体中的化学结构单元与合金成分设计[J]. 金属学报, 2018, 54(2): 293-300.
[6] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[7] 濮晟,谢光,王莉,潘智毅,楼琅洪. Re和W对铸态镍基单晶高温合金再结晶的影响*[J]. 金属学报, 2016, 52(5): 538-548.
[8] 郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
[9] 孙文,秦学智,郭建亭,楼琅洪,周兰章. 铸造镍基高温合金中初生MC碳化物的退化过程和机理*[J]. 金属学报, 2016, 52(4): 455-462.
[10] 侯介山,郭建亭,袁超,周兰章. 一种抗热腐蚀铸造镍基高温合金中σ相的析出及回溶*[J]. 金属学报, 2016, 52(2): 168-176.
[11] 王玉敏,李双明,钟宏,傅恒志. 定向凝固DD6单晶高温合金枝晶组织均匀性研究[J]. 金属学报, 2015, 51(9): 1038-1048.
[12] 安金岚,王磊,刘杨,胥国华,赵光普. 长期时效对GH4169合金组织演化及低周疲劳行为的影响*[J]. 金属学报, 2015, 51(7): 835-843.
[13] 郝宪朝,张龙,熊超,马颖澈,刘奎. 760 ℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 807-814.
[14] 李小琳, 王昭东. 含Nb-Ti低碳微合金钢中纳米碳化物的相间析出行为[J]. 金属学报, 2015, 51(4): 417-424.
[15] 濮晟, 谢光, 郑伟, 王栋, 卢玉章, 楼琅洪, 冯强. W和Re对固溶态镍基单晶高温合金变形和再结晶的影响*[J]. 金属学报, 2015, 51(2): 239-248.