Please wait a minute...
金属学报  2018, Vol. 54 Issue (4): 591-602    DOI: 10.11900/0412.1961.2017.00334
  本期目录 | 过刊浏览 |
基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为
张宇1, 王清1, 董红刚1, 董闯1(), 张洪宇2, 孙晓峰2
1 大连理工大学三束材料改性教育部重点实验室 大连 116024
2 中国科学院金属研究所 沈阳 110016
Nickel-Based Single-Crystal Superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) Designed by Cluster-Plus-Glue-Atom Model and Their 1000 h Long-Term Ageing Behavior at 900 ℃
Yu ZHANG1, Qing WANG1, Honggang DONG1, Chuang DONG1(), Hongyu ZHANG2, Xiaofeng SUN2
1 Key laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
Yu ZHANG, Qing WANG, Honggang DONG, Chuang DONG, Hongyu ZHANG, Xiaofeng SUN. Nickel-Based Single-Crystal Superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) Designed by Cluster-Plus-Glue-Atom Model and Their 1000 h Long-Term Ageing Behavior at 900 ℃[J]. Acta Metall Sin, 2018, 54(4): 591-602.

全文: PDF(6577 KB)   HTML
摘要: 

基于团簇加连接原子模型,通过Ta-Ti和Ni-Co互换对第一代镍基单晶高温合金进行成分设计,并对所设计的A组和B组成分系列进行选晶法单晶制备、初熔温度测试、标准热处理和900 ℃、1000 h长期时效。其中,A组为[Al-Ni11Co1](Al1TaxTi0.5-xCr1W0.25Mo0.25),x=0、0.25和0.5 (对应Ta和Ti的质量分数分别为0Ta-2.65Ti、4.82Ta-1.26Ti和9.32Ta-0Ti);B组为[Al-Ni12-yCoy](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25),y=1.5、1.75、2和2.5 (对应的Co质量分数分别为9.43Co、11Co、12.57Co和15.71Co)。在A组合金中,随Ta的增加(Ti的降低),初熔温度升高,均超过1330 ℃,其中9.32Ta-0Ti最高,在1335~1340 ℃之间;标准热处理后γ/γ′负错配度从-0.262%减小到-0.247%;长期时效中γ′的粗化得到抑制,9.32Ta-0Ti的粗化速率最低 (K=5.6×10-5 μm3/h)。对于B组合金,Co含量变化未明显改变初熔温度和长期时效γ′粗化速率,但初熔温度同样超过1330 ℃,Co作用主要体现在提高标准热处理后的γ′体积分数(约69%)和减小γ′尺寸(约0.55 μm)。2组合金的粗化速率均接近三代单晶合金水平(K≈(2.08~3.82)×10-5 μm3/h)。

关键词 镍基单晶高温合金团簇加连接原子模型长期时效错配度γ′粗化速率;    
Abstract

It has been pointed out recently that the compositions of industrial alloys are originated from cluster-plus-glue-atom structure units in solid solutions. Specifically for nickel-based superalloys, after properly grouping the alloying elements into Al, Ni-like (, including Ni, Co, Fe, Re, Ru and Ir), γ′γ, including Ta, Ti, V, Nb), and γ-forming Cr-like (γ, including Cr, Mo and W), the optimal formula for single-crystal superalloys has been established [Al-12](Al1γ0.5γ1.5). In this work, the first generation single-crystal superalloys were investigated on the basis of the proposed formula, by using =(Ni and Co), γ=(Ta and Ti), and γ=(Cr, Mo and W). Two series of alloys were designed, formulated respectively as group A: [Al-Ni11Co1](Al1TaxTi0.5-xCr1W0.25Mo0.25), with x=0, 0.25 and 0.5 (the corresponding mass fractions of Ta and Ti are respectively 0Ta-2.65Ti, 4.82Ta-1.26Ti and 9.32Ta-0Ti), and group B: [Al-Ni12-yCoy](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25), with y=1.5, 1.75, 2 and 2.5 (the corresponding mass fractions of Co are respectively 9.43Co, 11Co, 12.57Co and 15.71Co). The single-crystal superalloys were prepared using selector technique. And then they underwent the following tests of incipient melting, standard heat treatment and 1000 h long term ageing at 900 ℃. It is found that: (1) In group A, with increasing Ta content (decreasing Ti), all the incipient melting temperatures are increased to above 1330 ℃, and to the highest value is between 1335 ℃ and 1340 ℃ for alloy 9.32Ta-0Ti; the γ/γ′ lattice negative misfits after standard heat treatment are reduced from -0.262% (0Ta-2.65Ti) to -0.247% (9.32Ta-0Ti); the γ′ coarsening tendency after long-term ageing is deduced, and alloy 9.32Ta-0Ti has the lowest coarsening rate (K=5.6×10-5 μm3/h). (2) In group B, the Co content does not influence the incipient melting temperature (always above 1330 ℃) and the coarsening rate of γ′ after long-term ageing. The major role of Co is to increase the mean size of the γ′ precipitates to about 0.55 μm and the γ′ volume fraction to about 69% after the standard heat treatment. These two groups of alloys have their γ′ coarsening rates approaching the level of third-generation single-crystal superalloys (K≈(2.08~3.82)×10-5 μm3/h).

Key wordsnickel-based single-crystal superalloy    cluster-plus-glue-atom model    long-term ageing    lattice misfit    γ′ coarsening rate;
收稿日期: 2017-08-14     
ZTFLH:  TG113  
基金资助:国家重点科研发展计划项目No.2016YFB0701401及国家自然科学基金项目No.11674045
作者简介:

作者简介 张 宇,男,1985年生,博士生

图1  fcc-CN12团簇([Al-Ni12]团簇)示意图
Group Alloy Cluster formula Alloy / (mass fraction / %)
Ta Ti Co Al Cr Mo W Ni
A 0Ta-2.65Ti [Al-Ni11Co1](Al1Ti0.5Cr1W0.25Mo0.25)
x=0,ρ=8.18 gcm-3
N 0 2.65 6.52 5.97 5.75 2.65 5.08 Bal.






















M 0 2.35 6.62 5.49 5.43 2.63 4.96
E -0.30 0.10 -0.48 -0.32 -0.02 -0.12
4.82Ta-1.28Ti [Al-Ni11Co1](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25)
x=0.25,ρ=8.44 gcm-3
N 4.82 1.28 6.29 5.76 5.55 2.56 4.90
M 4.77 1.08 6.17 5.46 5.29 2.73 4.96
E -0.05 -0.20 -0.12 -0.30 -0.26 0.17 0.06
9.32Ta-0Ti [Al-Ni11Co1](Al1Ta0.5Cr1W0.25Mo0.25)
x=0.5,ρ=8.72 gcm-3
N 9.32 0 6.07 5.56 5.36 2.47 4.73
M 9.11 0 6.00 5.28 5.17 2.45 4.77
E -0.21 -0.07 -0.28 -0.19 -0.02 0.04
B 9.43Co [Al-Ni10.5Co1.5](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25)
y=1.5,ρ=8.47 gcm-3
N 4.82 1.28 9.43 5.75 5.54 2.56 4.90
M 4.68 1.17 9.36 5.57 5.43 2.64 4.91
E -0.14 -0.11 -0.07 -0.18 -0.11 0.08 0.01
11Co [Al-Ni10.25Co1.75](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25)
y=1.75,ρ=8.45 gcm-3
N 4.82 1.28 11.00 5.75 5.54 2.56 4.90
M 4.70 1.17 10.92 5.54 5.41 2.64 4.89
E -0.12 -0.11 -0.08 -0.21 -0.13 0.08 -0.01
12.57Co [Al-Ni10Co2](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25)
y=2,ρ=8.46 gcm-3
N 4.82 1.28 12.57 5.75 5.54 2.56 4.90
M 4.72 1.17 12.48 5.54 5.38 2.64 4.88
E -0.10 -0.11 -0.09 -0.21 -0.16 0.08 -0.02
15.71Co [Al-Ni9.5Co2.5](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25)
y=2.5,ρ=8.44 gcm-3
N 4.82 1.28 15.71 5.75 5.54 2.56 4.90
M 4.77 1.08 15.68 5.52 5.34 2.72 4.72
E -0.05 -0.20 -0.03 -0.23 -0.20 0.16 -0.18
表1  合金的名义成分(N)、母合金XRF测试结果(M)、误差(E)和单晶密度(ρ)
图2  在最低初熔温度时样品的SEM像
图3  2组合金样品经标准热处理和长期时效后的SEM像
图4  标准热处理和900 ℃长期时效样品的γ′分析
图6  源自d电子理论的合金元素矢量图,显示元素的分类特性
图5  A组样品的XRD结果(标准热处理)和SEM像(1050 ℃、120 MPa持久实验)
[1] Caron P, Khan T.Evolution of Ni-based superalloys for single crystal gas turbine blade applications[J]. Aerosp. Sci. Technol., 1999, 3: 513
[2] Reed R C.The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 19
[3] Jin T, Zhou Y Z, Wang X G, et al.Research process on microstructural stability and mechanical behavior of advanced Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2015, 51: 1153(金涛, 周亦胄, 王新广等. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51: 1153)
[4] Wang B, Zhang J, Huang T W, et al.Effect of Co on microstructural stability of the third generation Ni-based single crystal superalloys[J]. J. Mater. Res., 2016, 31: 1328
[5] Wang X G, Li J R, Yu J, et al.Tensile anisotropy of single crystal superalloy DD9[J]. Acta Metall. Sin., 2015, 51: 1253(王效光, 李嘉荣, 喻健等. DD9单晶高温合金拉伸性能各向异性[J]. 金属学报, 2015, 51: 1253)
[6] Wang B, Zhang J, Pan X J, et al.Effects of W on microstructural stability of the third generation Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2017, 53: 298(王博, 张军, 潘雪娇等. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53: 298)
[7] Li J R, Xiong J C, Tang D Z.Advanced High Temperature Structural Materials and Technology (I) [M]. Beijing: National Defend Industry Press, 2012: 3(李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术(上) [M]. 北京: 国防工业出版社, 2012: 3)
[8] Zheng Y R, Zhang D T.Color Metallographic Investigation of Superalloys and Steels [M]. Beijing: National Defense Industry Press, 1999: 10(郑运荣, 张德堂. 高温合金与钢的彩色金相研究 [M]. 北京: 国防工业出版社, 1999: 10)
[9] Goerler J V, Lopez-Galilea I, Roncery L M, et al.Topological phase inversion after long-term thermal exposure of nickel-base superalloys: Experiment and phase-field simulation[J]. Acta Mater., 2017, 124: 151
[10] Sabol G P, Stickler R.Microstructure of nickel-based superalloys[J]. Phys. Status Solidi, 1969, 35: 11
[11] Betteridge W, Shaw S W K. Development of superalloys[J]. Mater. Sci. Technol., 1987, 3: 682
[12] Academic Committee of the Superalloys, CSM. China Superalloys Handbook (I) [M]. Beijing: China Zhijian Publishing House, Standards Press of China, 2012: 1(中国金属学会高温材料分会. 中国高温合金手册(上) [M]. 北京: 中国质检出版社, 中国标准出版社, 2012: 1)
[13] Li J R, Xiong J C, Tang D Z.Advanced High Temperature Structural Materials and Technology (II) [M]. Beijing: National Defense Industry Press, 2012: 1(李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术(下) [M]. 北京: 国防工业出版社, 2012: 1)
[14] Jarrett R N, Collier J P, Tien J K.Effects of cobalt on the hot workability of nickel-base superalloys [A]. Superalloys 1984[C]. Champion, PA: TMS, 1984: 455
[15] Ye J.The Nickel-Based Superalloys of the United States of America [M]. Beijing: Science Press, 1978: 48(冶军. 美国镍基高温合金 [M]. 北京: 科学出版社, 1978: 48)
[16] Academic Committee of the Superalloys, CSM. China Superalloys Handbook (II) [M]. Beijing: China Zhijian Publishing House, Standards Press of China, 2012: 1(中国金属学会高温材料分会. 中国高温合金手册(下) [M]. 北京: 中国质检出版社, 中国标准出版社, 2012: 1)
[17] Reed R C, Tao T, Warnken N.Alloys-by-design: Application to nickel-based single crystal superalloys[J]. Acta Mater., 2009, 57: 5898
[18] Nathal M V, Maier R D, Ebert L J.The Influence of cobalt on the microstructure of the nickel-base superalloy MAR-M247[J]. Metall. Trans., 1982, 13A: 1775
[19] Strangman T E, Hoppin III G S, Phipps C M, et al. Development of exothermically cast single-crystal Mar-M 247 and derivative alloys [A]. Proceedings of the 4th International Symposium on Superalloys[C]. Champion, PA: Metallurgical Society of AIME and American Society for Metals, 1980: 225
[20] Bürgel R, Grossmann J, Lüsebrink O, et al.Development of a new alloy for directional solidification of large industrial gas turbine blades [A]. Superalloys 2004[C]. Champion, PA: TMS, 2004: 25
[21] Walston W S, O'Hara K S, Ross E W, et al. René N6: Third generation single crystal superalloy [A]. Superalloys 1996[C]. Warrendale, PA: TMS, 1996: 27
[22] Erickson G L.The development of the CMSX-11B and CMSX-11C alloys for industrial gas turbine application [A]. Superalloys 1996[C]. Warrendale, PA: TMS, 1996: 45
[23] Erickson G L.The development and application of CMSX(R)-10 [A]. Superalloys 1996[C]. Warrendale, PA: TMS, 1996: 35
[24] Walston S, Cetel A, MacKay R, et al. Joint development of a fourth generation single crystal superalloy [A]. Proceedings of the 10th International Symposium on Superalloys[C]. Champion, PA: TMS, 2004: 15
[25] Fu C L, Reed R, Janotti A, et al.On the diffusion of alloying elements in the nickel-base superalloys [A]. Superalloys 2004[C]. Champion, PA: TMS, 2004: 867
[26] Wang W Z, Jin T, Zhao N R, et al.Effect of cobalt on chemical segregation and solution process in Re-containing single crystal superalloys[J]. Trans. Nonferrous Met. Soc. China, 2006, 16(suppl.3): 1978
[27] Murakami H, Yamagata T, Harada H, et al.The influence of Co on creep deformation anisotropy in Ni-base single crystal superalloys at intermediate temperatures[J]. Mater. Sci. Eng., 1997, A223: 54
[28] Caldwell E C, Feda F J, Fuchs G E.Segregation of elements in high refractory content single crystal nickel based superalloys [A]. Superalloys 2004[C]. Champion, PA: TMS, 2004: 811
[29] Zhang J.Effect of Ti and Ta on hot cracking susceptibility of directionally solidified Ni-based superalloy IN792[J]. Scr. Mater., 2003, 48: 677
[30] Zhang J, Singer R F.Hot tearing of nickel-based superalloys during directional solidification[J]. Acta Mater., 2002, 50: 1869
[31] Hultgren R, Desai P D, Hawkins D T, et al.Selected Values of the Thermodynamic Properties of the Elements[M]. Metals Park, Ohio: American Society for Metals, 1973: 126
[32] Sato A, Harada H, Yeh A C, et al.A 5th generation SC superalloy with balanced high temperature properties and processability [A]. Superalloys 2008[C]. Champion, PA: TMS, 2008: 131
[33] Kawagishi K, Yeh A C, Yokokawa T, et al.Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238 [A]. Superalloy 2012[C]. Champion, PA: TMS, 2012: 189
[34] Dong C, Wang Q, Qiang J B, et al.From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses[J]. J. Phys., 2007, 40D: R273
[35] Hong H L, Wang Q, Dong C, et al.Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys[J]. Sci. Rep., 2014, 4: 7065
[36] Jiang B B, Wang Q, Dong C.A cluster-formula composition design approach based on the local short-range order in solid solution structure[J]. Acta Phys. Sin., 2017, 66: 026102(姜贝贝, 王清, 董闯. 基于固溶体短程序结构的团簇式合金成分设计方法[J]. 物理学报, 2017, 66: 026102)
[37] Qian S N, Dong C.Composition formulas for Mg-Al industrial alloy specifications[J]. Acta Phys. Sin., 2017, 66: 136103(钱圣男, 董闯. Mg-Al系工业合金牌号的成分式解析[J]. 物理学报, 2017, 66: 136103)
[38] Wang Q, Zha Q F, Liu E X, et al.Composition design of high-strength martensitic precipitation hardening stainless steels based on a cluster model[J]. Acta Metall. Sin., 2012, 48: 1201(王清, 查钱锋, 刘恩雪等. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计[J]. 金属学报, 2012, 48: 1201)
[39] Wen D H, Jiang B B, Wang Q, et al.Influences of Mo/Zr minor-alloying on the phase precipitation behavior in modified 310S austenitic stainless steels at high temperatures[J]. Mater. Des., 2017, 128: 34
[40] Wang Q, Ji C J, Wang Y M, et al.β-Ti alloys with low Young's moduli interpreted by cluster-plus-glue-atom model[J]. Metall. Mater. Trans., 2013, 44A: 1872
[41] Pang C, Wang Q, Zhang R Q, et al.β Zr-Nb-Ti-Mo-Sn alloys with low Young?s modulus and low magnetic susceptibility optimized via a cluster-plus-glue-atom model[J]. Mater. Sci. Eng., 2015, A626: 369
[42] Wang Q, Ma Y, Jiang B B, et al.A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties[J]. Scr. Mater., 2016, 120: 85
[43] Ma Y, Jiang B B, Li C L, et al.The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys[J]. Metals, 2017, 7: 57
[44] Mughrabi H.Microstructural aspects of high temperature deformation of monocrystalline nickel base superalloys: Some open problems[J]. Mater. Sci. Technol., 2009, 25: 191
[45] Mughrabi H.The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys—With special reference to the new γ′-hardened cobalt-base superalloys[J]. Acta Mater., 2014, 81: 21
[46] Yu J J, Wang Q, Li X N, et al.Composition design of nickel-base superalloys based on cluster structural model[J]. Trans. Mater. Heat Treat., 2013, 34(8): 184(于晶晶, 王清, 李晓娜等. 基于团簇结构模型的镍基高温合金成分设计[J]. 材料热处理学报, 2013, 34(8): 184)
[47] Dong D D, Zhang S, Wang Z R, et al.Nearest-neighbor coordination polyhedral clusters in metallic phases defined using Friedel oscillation and atomic dense packing[J]. J. Appl. Crystallogr., 2015, 48: 2002
[48] Takeuchi A, Inoue A.Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Mater. Trans, 2005, 46: 2817
[49] Qin G Y.Quantitative Metallography [M]. Chengdu: Sichuan Science and Technology Press, 1987: 5(秦国友. 定量金相[M]. 成都: 四川科学技术出版社, 1987: 5)
[50] Vander Voort G F. Metallography Principles and Practice[M]. New York: McGraw-Hill Book Company, 1984: 426
[51] Li Z M, Xia Z J, Qin G Y.Image analysing techniques for quantitative metalography[J]. Opto-Elec. Eng., 1995, 22(4): 46(李志敏, 夏志坚, 秦国友. 定量金相的图象分析技术[J]. 光电工程. 1995, 22(4): 46)
[52] Wang W Z, Jin T, Liu J L, et al.Role of Re and Co on microstructures and γ′ coarsening in single crystal superalloys[J]. Mater. Sci. Eng., 2008, A479: 148
[53] Ardell A J.The effect of volume fraction on particle coarsening: Theoretical considerations[J]. Acta Metall., 1972, 20: 61
[54] Murata Y, Miyazaki S, Morinaga M, et al.Hot corrosion resistant and high strength nickel-based single crystal and directionally-solidified superalloys developed by the d-electrons concept [A]. Superalloys 1996[C]. Warrendale, PA: TMS, 1996: 61
[55] Carroll L J, Feng Q, Mansfield J F, et al.Elemental partitioning in Ru-containing nickel-base single crystal superalloys[J]. Mater. Sci. Eng., 2007, A457: 292
[56] Ochial S, Oya Y, Suzuki T.Alloying behaviour of Ni3Al, Ni3Ga, Ni3Si and Ni3Ge[J]. Acta Metall., 1984, 32: 289
[57] Morinaga M, Yukawa N, Adachi H.Alloying effect on the electronic structure of Ni3Al (γ′)[J]. J. Phys. Soc. Jpn., 1984, 53: 653
[58] Mishima Y, Ochiai S, Suzuki T.Lattice parameters of Ni(γ), Ni3Al(γ′) and Ni3Ga(γ′) solid solutions with additions of transition and B-subgroup elements[J]. Acta Metall., 1985, 33: 1161
[59] Pollock T M, Argon A S.Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates[J]. Acta Metall. Mater., 1994, 42: 1859
[60] Caron P.High γ′ solvus new generation nickel-based superalloys for single crystal turbine blade applications [A]. Superalloys 2000[C]. Champion, PA: TMS, 2000: 737
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[4] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[6] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[7] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[8] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[9] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[10] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[11] 郭静, 李金国, 刘纪德, 黄举, 孟祥斌, 孙晓峰. 低偏析异质籽晶制备单晶高温合金的籽晶熔合区形成机制研究[J]. 金属学报, 2018, 54(3): 419-427.
[12] 董闯, 董丹丹, 王清. 固溶体中的化学结构单元与合金成分设计[J]. 金属学报, 2018, 54(2): 293-300.
[13] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[14] 郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
[15] 濮晟,谢光,王莉,潘智毅,楼琅洪. Re和W对铸态镍基单晶高温合金再结晶的影响*[J]. 金属学报, 2016, 52(5): 538-548.