Please wait a minute...
金属学报  2019, Vol. 55 Issue (11): 1427-1436    DOI: 10.11900/0412.1961.2019.00091
  研究论文 本期目录 | 过刊浏览 |
ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响
黄太文1,卢晶1,许瑶1,王栋2,张健2,张家晨1,张军1,刘林1()
1. 西北工业大学凝固技术国家重点实验室 西安 710072
2. 中国科学院金属研究所 沈阳 110016
Effects of Rhenium and Tantalum on Microstructural Stability of Hot-Corrosion Resistant Single Crystal Superalloys Aged at 900 ℃
HUANG Taiwen1,LU Jing1,XU Yao1,WANG Dong2,ZHANG Jian2,ZHANG Jiachen1,ZHANG Jun1,LIU Lin1()
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(15166 KB)   HTML
摘要: 

开展了不同Re和Ta含量抗热腐蚀单晶高温合金900 ℃长期时效的实验研究,定量分析了0~7500 h时效过程中γ′形貌、尺寸的演化和拓扑密排(TCP)相析出规律。结果表明,2Ta2Re、5Ta0Re、5Ta2Re、8Ta0Re和8Ta2Re 5种合金中,随Ta和Re含量增加,γ′相尺寸变小,且γ′相粗化速率变慢,粗化速率分别为:1.445×10-5、1.569×10-5、1.390×10-5、1.465×10-5和1.384×10-5 μm3/h。提高Ta和Re的含量可以降低合金的有效扩散系数并增加扩散激活能,从而降低粗化速率,其中Re的作用更显著。时效2000 h后,含Re合金依次析出了TCP相,高Ta含Re合金析出较严重。Ta和Re交互作用影响了γγ′两相元素的分配行为,其中8Ta2Re合金Ta进入γ′相使其晶格常数变大的同时,也促进了Re、W、Cr等元素在γ基体中的分配,促进TCP相析出。

关键词 抗热腐蚀单晶高温合金长期时效组织稳定性    
Abstract

The development of gas turbines urgently requires the development of new single crystal superalloys with capacity to service for long time at higher temperature and under hot corrosion environment. In order to take into account both the strength and structural stability of the alloy, it is an effective way to increase the content of key strengthening elements Re and Ta reasonably, and control the mismatch of γ/γ' to delay the growth kinetics of γ'. In this work, the long-term thermal exposure (LTTE) experiments of single crystal superalloys with different Re and Ta contents at 900 ℃ were carried out. The evolution of morphology and size of γ', and the precipitation of topological close-packed (TCP) phase during 0~7500 h ageing process were quantitatively analyzed. The results show that the size and the coarsening rate of γ' phase decreases with the increase of Ta and Re content in 2Ta2Re, 5Ta0Re, 5Ta2Re, 8Ta0Re and 8Ta2Re alloys. The coarsening rates are 1.445×10-5, 1.569×10-5, 1.390×10-5, 1.465×10-5 and 1.384×10-5 μm3/h respectively. With the increase of Ta and Re content, the effective diffusion coefficient decreases and the diffusion activation energy increases, thus of the coarsening rate of precipitated phase decreases. After ageing for 2000 h, TCP phase was precipitated in turn in alloys containing Re, and the precipitation of TCP phase was more serious in alloys containing higher content of Ta. The interaction between Ta and Re affects the atomic distribution behavior of elements in γ and γ', in which 8Ta2Re alloy Ta enters the γ' phase to increase its lattice constant, and at the same time promotes the distribution of elements such as Re, W and Cr in the γ matrix, which results in more negative γ/γ' mismatch and promotes the precipitation of TCP phase.

Key wordshot-corrosion resistant single crystal superalloy    long-term thermal exposure    microstructural stability
收稿日期: 2019-04-01     
ZTFLH:  TG132.3  
基金资助:国家重点研发计划项目No(2016YFB0701400);国家自然科学基金项目Nos(51331005);国家自然科学基金项目Nos(51631008)
通讯作者: 刘林     E-mail: linliu@nwpu.edu.cn
Corresponding author: Lin LIU     E-mail: linliu@nwpu.edu.cn
作者简介: 黄太文,男,1975年生,博士

引用本文:

黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
Taiwen HUANG, Jing LU, Yao XU, Dong WANG, Jian ZHANG, Jiachen ZHANG, Jun ZHANG, Lin LIU. Effects of Rhenium and Tantalum on Microstructural Stability of Hot-Corrosion Resistant Single Crystal Superalloys Aged at 900 ℃. Acta Metall Sin, 2019, 55(11): 1427-1436.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00091      或      https://www.ams.org.cn/CN/Y2019/V55/I11/1427

图1  2Ta2Re合金元素在γ和γ′两相中的分配
图2  2Ta2Re中合金元素在γ/γ′两相界面处的分布
图3  5种合金各组元在γ和γ′两相的分配系数(kiγ/γ′)
图4  5种合金在900 ℃长期时效中组织形貌演变
Alloy100 h200 h500 h1000 h2000 h5000 h
2Ta2Re1.41±0.121.23±0.131.26±0.221.27±0.201.35±0.151.20±0.24
5Ta0Re1.37±0.151.35±0.131.38±0.141.41±0.231.37±0.161.42±0.23
5Ta2Re1.45±0.201.37±0.201.25±0.231.26±0.291.29±0.211.29±0.29
8Ta0Re1.36±0.201.33±0.151.30±0.121.26±0.281.28±0.141.22±0.23
8Ta2Re1.47±0.241.39±0.271.47±0.331.38±0.261.40±0.171.39±0.23
表1  5种合金长期时效各阶段γ'相的Feret Ratio
图5  5种合金在900 ℃热暴露不同时间时γ′相的尺寸和粗化速率
图6  5Ta2Re和8Ta2Re合金经不同时间时效后析出的TCP相面积分数
图7  900 ℃高温时效不同时间TCP相形貌的演化
Alloyaγ / nmaγ' / nmδ / %
2Ta2Re0.35800.35840.1087
5Ta0Re0.35780.35900.2956
5Ta2Re0.35900.3588-0.0730
8Ta0Re0.35790.35940.4210
8Ta2Re0.35980.3592-0.1521
表2  5种合金热处理后室温下的γ和γ′相的晶格常数和γ/γ′两相晶格错配度
Alloyγ' precipitates morphologyCorrelation startup / hMisfit / %
2Ta2ReNearly cuboidal → nearly round1000-0.0113
5Ta0ReNearly cuboidal → nearly cuboidal-0.1760
5Ta2ReCuboidal → nearly cuboidal → nearly round500-0.1873
8Ta0ReCuboidal → nearly cuboidal → nearly round5000.2997
8Ta2ReCuboidal → nearly cuboidal1000-0.2666
表3  5种合金时效过程中枝晶干处γ'相的形貌演化与错配度之间的关系
ElementD0m.Ni / (m2·s-1)Qm,Ni / (kJ·mol-1)
Cr3×10-6170.7
Co7.5×10-5285.1
Mo1.15×10-4281.3
Re8.2×10-7255.0
W8.0×10-6264.0
Ni1.9×10-4284.0
表4  指前因子(D0m,Ni)及溶质原子与Ni之间的扩散激活能(Qm,Ni) [23]
AlloyDeff / (m2·s-1)Qeff / (kJ·mol-1)
2Ta2Re9.98×10-6368.63
5Ta0Re1.15×10-5369.83
5Ta2Re8.67×10-6378.76
8Ta0Re9.29×10-6385.05
8Ta2Re7.66×10-6387.89
表5  计算得到的5种合金的有效扩散系数(Deff)和扩散激活能(Qeff)
AlloyNVˉTendencyMdˉTendency?STendencyVTCP / %STCP / %
2Ta2Re1.78No0.954No-4.47No0.790.1
5Ta0Re1.85No0.966No-4.29No00
5Ta2Re1.95No0.973No0.73Yes2.421.8
8Ta0Re2.05No0.986Yes3.44Yes00
8Ta2Re2.18No0.993Yes5.58Yes4.285.6
表6  实验合金的NVˉ、Mdˉ、?S及JMatPro计算和实测的TCP相含量
[1] PollockT M, TinS. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties [J]. J. Propuls. Power, 2006, 22: 361
[2] KonterM, ThumannM. Materials and manufacturing of advanced industrial gas turbine components [J]. J. Mater. Process. Technol., 2001, 117: 386
[3] SatoA, MoverareJ J, HasselqvistM, et al. On the mechanical behavior of a new single-crystal superalloy for industrial gas turbine applications [J]. Metall. Mater. Trans., 2012, 43A: 2302
[4] SinghK. Advanced materials for land based gas turbines [J]. Trans. Indian Inst. Met., 2014, 67: 601
[5] LiM S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 34
[5] 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 34
[6] SidhuR K, OjoO A, ChaturvediM C. Sub-solidus melting of directionally solidified René 80 superalloy during solution heat treatment [J]. J. Mater. Sci., 2008, 43: 3612
[7] GordonA P, TrexlerM D, NeuR W, et al. Corrosion kinetics of a directionally solidified Ni-base superalloy [J]. Acta Mater., 2007, 55: 3375
[8] GiameiA F, AntonD L. Rhenium additions to a Ni-base superalloy: Effects on microstructure [J]. Metall. Trans., 1985, 16A: 1997
[9] WangW Z, JinT, LiuJ L, et al. Role of Re and Co on microstructures and γ′ coarsening in single crystal superalloys [J]. Mater. Sci. Eng., 2008, A479: 148
[10] PyczakF, DevrientB, NeunerF C, et al. The influence of different alloying elements on the development of the γ/γ′ microstructure of nickel-base superalloys during high-temperature annealing and deformation [J]. Acta Mater., 2005, 53: 3879
[11] Booth-MorrisonC, NoebeR D, SeidmanD N. Effects of tantalum on the temporal evolution of a model Ni-Al-Cr superalloy during phase decomposition [J]. Acta Mater., 2009, 57: 909
[12] DurstK, G?kenM. Micromechanical characterisation of the influence of rhenium on the mechanical properties in nickel-base superalloys [J]. Mater. Sci. Eng., 2004, A387-389: 312
[13] WangB, ZhangJ, HuangT W, et al. Effect of Co on microstructural stability of the third generation Ni-based single crystal superalloys [J]. J. Mater. Res., 2016, 31: 1328
[14] WangB, ZhangJ, PanX J, et al. Effects of W on microstructural stability of the third generation Ni-based single crystal superalloys [J]. Acta Metall. Sin., 2017, 53: 298
[14] 王 博, 张 军, 潘雪娇等. W对第三代镍基单晶高温合金组织稳定性的影响 [J]. 金属学报, 2017, 53: 298
[15] WangJ. Microstructure stability of a rhenium-containing nickel-based single crystal superalloy and thermodynamical design of low rhenium-containing alloys [D]. Shanghai: Shanghai Jiaotong University, 2011
[15] 王 静. 含铼镍基单晶高温合金组织稳定性及低铼成分的热力学设计 [D]. 上海: 上海交通大学, 2011
[16] PyczakF, DevrientB, MughrabiH. The effects of different alloying elements on the thermal expansion coefficients, lattice constants and misfit of nickel-based superalloys investigated by X-ray diffraction [A]. Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 827
[17] JiangX W, WangD, XieG, et al. The effect of long-term thermal exposure on the microstructure and stress rupture property of a directionally solidified Ni-based superalloy [J]. Metall. Mater. Trans., 2014, 45A: 6016
[18] PanJ S, TongJ M, TianM B. Fundamentals of Materials Science [M]. Beijing: Tsinghua University Press, 1998: 550
[18] 潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 1998: 550
[19] WangT, ChenL Q, LiuZ K. First-principles calculations and phenomenological modeling of lattice misfit in Ni-base superalloys [J]. Mater. Sci. Eng., 2006, A431: 196
[20] ZhouN, ShenC, MillsM J, et al. Phase field modeling of channel dislocation activity and γ′ rafting in single crystal Ni-Al [J]. Acta Mater., 2007, 55: 5369
[21] JenaA K, ChaturvediM C. The role of alloying elements in the design of nickel-base superalloys [J]. J. Mater. Sci., 1984, 19: 3121
[22] ShuD L, TianS G, NingT, et al. Influence of Re/Ru on concentration distribution in the γ/γ′ phases of nickel-based single crystal superalloys [J]. Mater. Des., 2017, 132: 198
[23] ZhuZ, BasoaltoH, WarnkenN, et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys [J]. Acta Mater., 2012, 60: 4888
[24] HobbsR A, ZhangL, RaeC M F, et al. Mechanisms of topologically close-packed phase suppression in an experimental ruthenium-bearing single-crystal nickel-base superalloy at 1100 ℃ [J]. Metall. Mater. Trans., 2008, 39A: 1014
[25] ShuD L, TianS G, TianN, et al. Influence of Re/Ru on concentration distribution in the γ/γ′ phase of nickel-based single crystal superalloys [J]. Mater. Des., 2017,132: 198
[26] ChenZ Q, HanY F, ZhongZ G, et al. Solubility prediction of multiple-component superalloys [J]. J. Aeronaut. Mater., 1998, 18(3): 8
[26] 陈志强, 韩雅芳, 钟振纲等. 多元高温合金固溶极限预测 [J]. 航空材料学报, 1998, 18(3): 8
[1] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[2] 王慧远, 张行, 徐新宇, 查敏, 王珵, 马品奎, 管志平. 超塑性轻合金组织稳定性的研究进展及展望[J]. 金属学报, 2018, 54(11): 1618-1624.
[3] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[4] 孙文,秦学智,郭建亭,楼琅洪,周兰章. 铸造镍基高温合金中初生MC碳化物的退化过程和机理*[J]. 金属学报, 2016, 52(4): 455-462.
[5] 侯介山,郭建亭,袁超,周兰章. 一种抗热腐蚀铸造镍基高温合金中σ相的析出及回溶*[J]. 金属学报, 2016, 52(2): 168-176.
[6] 安金岚,王磊,刘杨,胥国华,赵光普. 长期时效对GH4169合金组织演化及低周疲劳行为的影响*[J]. 金属学报, 2015, 51(7): 835-843.
[7] 郝宪朝,张龙,熊超,马颖澈,刘奎. 760 ℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 807-814.
[8] 胡雪, 黄礼新, 严伟, 王威, 单以银, 杨柯. Y2O3颗粒弥散强化低活化钢的组织稳定性研究*[J]. 金属学报, 2015, 51(6): 641-650.
[9] 金涛,周亦胄,王新广,刘金来,孙晓峰,胡壮麒. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51(10): 1153-1162.
[10] 孙文, 秦学智, 郭建亭, 楼琅洪, 周兰章. (W+Mo)/Cr比对铸造镍基高温合金时效组织和持久性能的影响[J]. 金属学报, 2015, 51(1): 67-76.
[11] 孙文, 秦学智, 郭永安, 郭建亭, 楼琅洪, 周兰章. Nb/Ti比对铸造镍基高温合金长期时效组织演化的影响*[J]. 金属学报, 2014, 50(6): 744-752.
[12] 谭梅林, 王常帅, 郭永安, 郭建亭, 周兰章. Ti/Al比对GH984G合金长期时效过程中γ ′沉淀相粗化行为及拉伸性能的影响[J]. 金属学报, 2014, 50(10): 1260-1268.
[13] 刘锦溪,张继祥,陆燕玲,李肖科,李志军,周兴泰. 长期时效对C276合金组织和力学性能的影响[J]. 金属学报, 2013, 49(6): 763-768.
[14] 曾强,燕平,邵冲,赵京晨,韩凤奎,张龙飞. K480铸造镍基高温合金900 ℃高温时效过程中晶界粗化行为研究[J]. 金属学报, 2013, 49(1): 63-70.
[15] 刘杨 王磊 何思斯 冯飞 吕旭东 张北江. 长期时效对GH4169合金动态拉伸变形行为的影响[J]. 金属学报, 2012, 48(1): 49-55.