Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1472-1480    DOI: 10.11900/0412.1961.2015.00158
  本期目录 | 过刊浏览 |
镍基单晶高温合金中温稳态蠕变期间的变形机制*
苏勇1,2,田素贵1(),于慧臣3,于莉丽1
1 沈阳工业大学材料科学与工程学院, 沈阳 110870
2 沈阳化工大学能源与动力工程学院, 沈阳 110142
3 中航工业北京航空材料研究院航空材料检测与评价北京市重点实验室,先进高温结构材料国防科技重点实验室, 北京 100095
DEFORMATION MECHANISMS OF Ni-BASED SINGLE CRYSTAL SUPERALLOYS DURING STEADY-STATE CREEP AT INTERMEDIATE TEMPERATURES
Yong SU1,2,Sugui TIAN1(),Huichen YU3,Lili YU1
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2 School of Energy and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142
3 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, AVIC Beijing Institute of Aeronautical Materials, Beijing 100095
引用本文:

苏勇,田素贵,于慧臣,于莉丽. 镍基单晶高温合金中温稳态蠕变期间的变形机制*[J]. 金属学报, 2015, 51(12): 1472-1480.
Yong SU, Sugui TIAN, Huichen YU, Lili YU. DEFORMATION MECHANISMS OF Ni-BASED SINGLE CRYSTAL SUPERALLOYS DURING STEADY-STATE CREEP AT INTERMEDIATE TEMPERATURES[J]. Acta Metall Sin, 2015, 51(12): 1472-1480.

全文: PDF(4344 KB)   HTML
摘要: 

通过蠕变性能测试、组织形貌观察及位错组态的衍射衬度分析, 研究了镍基单晶高温合金在中温/高应力稳态蠕变期间的变形机制. 结果表明, 在760 ℃, 760 MPa和800 ℃, 650 MPa蠕变期间, 剪切γ′相的位错可发生分解, 分解后领先的α/3<112>超点阵Shockley不全位错切入γ′相, 拖曳的α/6<112>Shockley不全位错滞留在γ′/γ相界面, 2个不全位错之间形成超点阵内禀堆垛层错(SISF); 此外, 剪切进入γ′相的超点阵位错可由{111}面交滑移至{100}面, 形成具有非平面位错芯结构的K-W锁, 可抑制位错的滑移和交滑移, 提高合金的蠕变抗力. 在850 ℃, 500 MPa蠕变期间, 合金中的层错消失, 部分剪切进入筏状γ′相的α<110>超点阵位错可分解形成“2个α/2<110>不全位错加反相畴界(APB)”的组态, 而合金中K-W锁的消失是由高温热激活致使立方体滑移的位错重新交滑移至八面体所致.

关键词 镍基单晶合金蠕变位错层错变形机制    
Abstract

Ni-based single crystal (SC) superalloys have been widely used to produce turbine blades of aeroengines, but under the action of centrifugal force, creep damage is still the main failure mode. In service, the blades experience multiple cycles of various conditions of high temperatures, low stresses and intermediate temperatures, high stresses, and due to effective and efficient means of cooling and insulating the blades during operation, the actual temperature the blades bear can be smaller than the working temperature at the hot ends of aeroengines, so the systematical study on the creep behavior of SC superalloys at intermediate temperatures, high stresses is significant. It is generally considered that dislocations cutting γ′ phase is the main deformation mechanism of SC alloys at intermediate temperatures, high stresses, and dislocations cutting into γ′ phase can be decomposed into different configurations for different alloy systems, even under similar conditions. Moreover, large amount of dislocations cutting into γ′ phase means the degradation of creep performance of the alloys, so it is significant to study the cutting modes of dislocations. In this work, by means of creep tests, TEM observations and diffraction contrast analysis of dislocations, the deformation mechanisms of a Ni-based SC superalloy during steady-state creep at intermediate temperatures, high stresses are studied. Results show that, under the conditions of 760 ℃, 760 MPa and 800 ℃, 650 MPa, dislocations cutting into γ′ phase are decomposed to form partial dislocations plus superlattice intrinsic stacking faults (SISF). Thereinto, the leading α/3<112> super Shockley partial dislocations cut into γ′ precipitates, while the dragging α/6<112> Shockley partial dislocations remain at γ′/γ interfaces, and between them there exists SISF. Additionally, super dislocations shearing into γ′ phase can cross slip from {111} to {100} crystal planes to form Kear-Wilsdorf (K-W) locks with non-plane dislocation core structure, which can inhibit the slip and cross slip of dislocations to enhance the creep strength of the alloy. At 850 ℃, 500 MPa, stacking faults disappear in the alloy, and some a<110> super dislocations cutting into γ′ rafts can be decomposed to form the configuration of two partial dislocations with Burgers vector of α/2<110> plus antiphase boundary (APB), and K-W locks are released for high-temperature thermal activation results in the cross slip of dislocations from cubic slip systems to octahedral ones.

Key wordsNi-based single crystal superalloy    creep    dislocation    stacking fault    deformation mechanism
    
基金资助:* 国家自然科学基金项目51271125 和辽宁省教育厅项目L2015426 资助
图1  热处理后合金在(100)晶面组织形貌的SEM像
图2  合金在不同条件测定的蠕变曲线
图3  合金在760 ℃, 760 MPa条件下蠕变40 h至稳态阶段的TEM像
图4  合金在800 ℃, 650 MPa和850 ℃, 500 MPa条件下蠕变40 h至稳态阶段的TEM像
图5  合金在760 ℃, 760 MPa 蠕变40 h后γ'相内的位错组态
图6  合金在800 ℃, 650 MPa蠕变40 h后γ'相内的位错组态
图7  合金在850 ℃, 500 MPa蠕变40 h后γ'相内的位错组态
图8  位错切入γ'相形成内禀层错(SISF)[22]和反相畴界(APB)的示意图
图9  K-W锁形成与释放的示意图
[1] Tian S G, Zhang S, Liang F S, Li A N, Li J J. Mater Sci Eng, 2011; A528: 4988?
[2] Xia Y F, Jin Y L. J?Northeast?Univ (Nat Sci), 2008; 29: 1053
[2] (夏永发, 金玉龙. 东北大学学报(自然科学版), 2008; 29: 1053)
[3] Liu L, Huang T W, Zhang J, Fu H Z. Mater Lett, 2007; 61: 227
[4] Reed R C, Tao T, Warnken N. Acta Mater, 2009; 57: 5898
[5] Ma W Y, Li S S, Qiao M, Gong S K, Zheng Y R, Han Y F. Chin J Nonferrous Met, 2006; 16: 937
[5] (马文有, 李树索, 乔 敏, 宫声凯, 郑运荣, 韩雅芳. 中国有色金属学报, 2006; 16: 937)
?Zhang J, Li J G, Jin T, Sun X F, Hu Z Q. Mater Sci Eng, 2010; A527: 3051?
[7] Zhang J X, Murakumo T, Koizumi Y, Kobayashi T, Harada H. Acta Mater, 2003; 51: 5073
[8] Rae C M F, Matan N, Reed R C. Mater Sci Eng, 2001; A300: 125
[9] Kear B K, Leverant G R, Oblak J M. Trans ASM,1969; 62: 639
[10] Leverant G R, Kear B H. Metall Trans, 1970; 1: 491
[11] Kear B H, Oblak J M, Giamei A F. Metall Trans, 1970; 1: 2477
[12] Link T, Feller-Kniepmeier M. Metall Trans, 1992; 23A: 99
[13] Yu X F, Tian S G, Du H Q, Wang M G, Meng F L. Rare Met Mater Eng, 2007; 36: 2148
[13] (于兴福, 田素贵, 杜洪强, 王明罡, 孟凡来. 稀有金属材料与工程, 2007; 36: 2148)
[14] Sass V, Glatzel U, Feller-Kniepmeier M. In: Kissinger R D, Deye D J, Anton D L,Cetel A D, Natal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale, PA: TMS, 1996: 283
[15] Sass V, Glatzel U, Feller-Kniepmeier M. Acta Metall Mater, 1996; 44: 1967
[16] Matan N, Cox D C, Carter P, Rist M A, Rae C M F, Reed R C. Acta Mater, 1999; 47: 1549
[17] Caron P, Khan T. Mater Sci Eng, 1983; 61: 173
[18] Lin D L, Lin T L, Wen M. Mater Sci Eng, 1989; A113: 207
[19] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Acta Metall Sin, 2005; 41: 1215
[19] (刘丽荣, 金 涛, 赵乃仁, 王志辉, 孙晓峰, 管恒荣, 胡壮麒. 金属学报, 2005; 41: 1215)
[20] Tian S G, Ding X, Guo Z G, Xie J, Xue Y C, Shu D L. Mater Sci Eng, 2014; A594: 7
[21] Yang H, Li Z H, Huang M S. Comput Mater Sci, 2013; 75: 52
[22] Peng Z F, Ren Y Y, Fan B Z,Yan P, Zhao J C,Wang Y Q, Sun J H. Acta Metall Sin, 1999; 35: 9
[22] (彭志方, 任遥遥, 樊宝珍, 燕 平, 赵京晨, 王延庆, 孙家华. 金属学报, 1999; 35: 9)
[23] Tian S G, Wu J, Shu D L, Su Y, Yu H C, Qian B J. Mater Sci Eng, 2014; A616: 260
[24] Milligan W W, Antolovich S D. Metall Trans, 1991; 22A: 2309
[25] Gabb T P, Draper S L, Hull D R, Mackay R A, Nathal M V. Mater Sci Eng, 1989; A118: 59
[26] Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B, Hu Z Q. Mater Sci Eng, 2000; A279: 160
[27] Gabrisch H, Mukherji D. Acta Mater, 2000; 48: 3157
[28] Zhang J X, Murakumo T, Koizumi Y, Kobayashi T, Harada H, Masaki Jr S. Metall Mater Trans, 2003; 33A: 3741
[29] Doun J, Veyssiere P, Beachamp P. Philos Mag, 1986; 54A: 375
[30] Veyssiere P, Doun J, Beachamp P. Philos Mag, 1985; 51A: 469
[31] Foiles S M, Daw M S. J Mater Res, 1987; 2: 5
[32] Chen S P, Voter A F, Srolovitz D J. Scr Metall, 1986; 20: 1389
[33] Kear B H, Wilsdorf H G F. Trans Met Soc, 1962; 224: 382
[34] Liu J L, Jin T, Zhang J H, Hu Z Q. Acta Metall Sin, 2001; 37: 1233
[34] (刘金来, 金 涛, 张静华, 胡壮麒. 金属学报, 2001; 37: 1233)
[35] Vitek V. Prog Mater Sci, 1992; 36(1): 1
[36] Yamaguchi M, Umakoshi Y. Prog Mater Sci, 1992; 34(1): 1
[37] Vitek V. Intermetallics, 1998; 6: 579
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[7] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[8] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[9] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[11] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[12] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[13] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[14] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[15] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.