Please wait a minute...
金属学报  2015, Vol. 51 Issue (5): 537-544    DOI: 10.11900/0412.1961.2014.00566
  论文 本期目录 | 过刊浏览 |
一步Q&P工艺对双马氏体钢微观组织与力学性能的影响*
李小琳,王昭东()
东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL
Xiaolin LI,Zhaodong WANG()
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
全文: PDF(5898 KB)   HTML
摘要: 

研究了经一步淬火C配分(Q&P)工艺处理的双马氏体实验钢的微观组织与力学性能, 并与经直接淬火及淬火回火(Q&T)工艺处理的实验钢进行对比, 初步探讨了一步Q&P工艺对材料微观组织和力学性能的影响规律. 结果表明, 显微组织主要由板条马氏体、片状马氏体和板条间薄膜状残余奥氏体组成, 且随着保温时间的延长, 片状马氏体含量先增加后减小, 残余奥氏体含量逐渐增大且趋于稳定. 与传统的直接淬火及Q&T工艺相比, 经一步 Q&P工艺处理后的实验钢具有良好的综合力学性能, 即具备高强度的同时也具备良好的塑性, 其强塑积、抗拉强度和延伸率分别可达21774.2 MPa%, 1442 MPa和15.1%, 且随着保温时间的延长, 抗拉强度逐渐减小, 延伸率逐渐增大且趋于稳定.

关键词 高强钢Q&P工艺马氏体残余奥氏体强塑积    
Abstract

In accordance with the demand for reduced fuel consumption and CO2 emissions in automobiles, and with the increasing high demand for vehicle lightweight and safety, advanced high- strength steels (AHSS) have received more attentions in recent years. The recent trend for the development of AHSS has been concentrated on the complex microstructure with multiphase. Quenching and partitioning (Q&P) steel with carbon-enriched austenite within martensitic matrix as a competitive candidate of AHSS have been developed widely. It has high strength and good ductility depending on the multiphase microstructure. Therefore, the relationship of the mechanical property and the microstructure of the Q&P steels should be studied in detail. In the present work, the microstructure characterization and mechanical properties of the experimental steel treated by one step Q&P process were investigated, as well as the direct quenching and Q&T processes. The results show that the microstructure of the steel treated by one step Q&P process mainly consists of lath martensite, plate martensite and residual austenite films between martensite laths. With a increase in the holding time, the fraction of the plate martensite firstly increases and then reduces, while that of the retained austenite firstly increases and then becomes constant. The combination of strength and elongation of the steel processed by one step Q&P is much better than the one processed by the other two, that is to say, the former one can possess good strength and ductility at the same time. The product of tensile strength and elongation, the tensile strength and the elongation can achieve 21774.2 MPa·%, 1442 MPa and 15.1%, respectively. Along with the holding time increasing, tensile strength decreases but elongation rises and finally be stable.

Key wordshigh strength steel    Q&P process    martensite    retained austenite    product of tensile strength and elongation
收稿日期: 2014-10-15     
基金资助:* 国家自然科学基金项目51034009和51234002资助
作者简介: 李小琳, 女, 1990年生, 博士生

引用本文:

李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响*[J]. 金属学报, 2015, 51(5): 537-544.
Xiaolin LI, Zhaodong WANG. EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL. Acta Metall Sin, 2015, 51(5): 537-544.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00566      或      https://www.ams.org.cn/CN/Y2015/V51/I5/537

Sample Process Austenization T (t) Quenchant Quenching T (t) Tempering T (t)
No.1 Direct quenching 950 ℃ (3 min) Saturated NaCl solution RT -
No.2 Direct quenching 950 ℃ (3 min) Water RT -
No.3 Direct quenching 950 ℃ (3 min) Air RT -
No.4 One step Q&P 950 ℃ (3 min) Molten NaNO2 300 ℃ (2 min) -
No.5 One step Q&P 950 ℃ (3 min) Molten NaNO2 300 ℃ (5 min) -
No.6 One step Q&P 950 ℃ (3 min) Molten NaNO2 300 ℃ (10 min) -
No.7 One step Q&P 950 ℃ (3 min) Molten NaNO2 300 ℃ (15 min) -
No.8 One step Q&P 950 ℃ (3 min) Molten NaNO2 300 ℃ (30 min) -
No.9 Q&T 950 ℃ (3 min) Saturated NaCl solution RT 300 ℃ (60 min)
No.10 Q&T 950 ℃ (3 min) Water RT 300 ℃ (60 min)
No.11 Q&T 950 ℃ (3 min) Air RT 300 ℃ (60 min)
表1  不同试样的热处理工艺参数
图1  不同试样的OM像
图2  试样No.8的膨胀曲线
图3  试样No.1~No.3的TEM像和SAED谱
图4  试样No.6的TEM像和SAED谱
图5  试样No.8的TEM像和SAED谱
图6  不同试样的XRD谱
Sample Rm / MPa δ / % Rmδ / (MPa%)
No.1 1637 10.8 17679.6
No.2 1611 11.2 18043.2
No.3 1429 13.9 19963.1
No.4 1485 14.3 21236.5
No.5 1442 15.1 21774.2
No.6 1369 15.8 21630.2
No.7 1325 16.3 21605.5
No.8 1275 16.8 21420.0
No.9 1498 12.1 18125.8
No.10 1469 12.7 18656.3
No.11 1390 14.0 19460.0
表2  不同试样的力学性能
[1] Senuma T. ISIJ Int, 2001; 41: 520
[2] Hu J, Du L X, Wang J J. Mater Sci Eng, 2012; A554: 79
[3] Guo J, Shang C J, Yang S W, Guo H, Wang X M, He X L. Mater Des, 2009; 30: 129
[4] Manohar P A, Chandra T, Killmore C R. ISIJ Int, 1996; 36: 1486
[5] Speer J G, Matlock D K, De Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2611
[6] Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426-432: 1089
[7] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2008; 40A: 46
[8] Liu H P, Lu X W, Jin X J, Dong H, Shi J. Scr Mater, 2011; 64: 749
[9] Li H Y, Lu X W, Li W J, Jin X J. Metall Mater Trans, 2010; 41A: 1284
[10] De Moor E, Lacroixs S, Clarke A J, Penning J, Speer J G. Metall Mater Trans, 2008; 39A: 2586
[11] Bagliani E P, Santofimia M J, Zhao L, Sietsma J, Anelli E. Mater Sci Eng, 2013; A559: 486
[12] Wang C Y. PhD Dissertation. Central Iron & Steel Research Institute, Beijing, 2010 (王存宇. 钢铁研究总院博士学位论文, 北京, 2010)
[13] Wang C Y, Shi J, Cao W Q, Hui W J. Acta Metall Sin, 2011; 47: 720 (王存宇, 时 捷, 曹文全, 惠卫军. 金属学报, 2011; 47: 720)
[14] Wang C Y, Shi J, Cao W Q, Dong H. Mater Sci Eng, 2010; A527: 3442
[15] Santofimia M J, Petrov R H, Zhao L, Sietsma J. Mater Charact, 2014; 92: 91
[16] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2009; 40A: 46
[17] Santofimia M J, Speer J G, Clarke A J, Zhao L, Sietsma J. Acta Mater, 2009; 57: 4548
[18] Cui Z Q,Qin Y C. Metallographic and Thermal Treatment. 2nd Ed., Bejing: China Machine Press, 2007: 250, 43 (崔忠圻,覃耀春. 金属学与热处理. 第二版, 北京: 机械工业出版业, 2007: 250, 43)
[19] Sun J, Yun H, Wang S Y. Mater Sci Eng, 2014; A596: 89
[20] Yan S, Liu X H, Liu W J. Mater Sci Eng, 2015; A620: 58
[21] Hana J, Bohuslav M, Marin F W, Daniel K. J Alloys Compd, 2014; 615: 163
[22] Li Z, Wu D. ISIJ Int, 2006; 46: 121
[23] Sugimoto K I, Usui N, Kobayashi M, Hashimota S I. ISIJ Int, 1992; 32: 1311
[24] Kung C Y, Rayment J J. Mater Trans, 1982; 13A: 328
[25] Pan J S,Tong J M,Tian M B. Material Science Foundation. Beijing: Tsinghua University Press, 2011: 462 (潘金生,仝健民,田民波. 材料科学基础. 北京: 清华大学出版社, 2011: 462)
[26] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2009; 40A: 46
[27] Zhong N, Wang X, Rong Y. J Mater Sci Technol, 2006; 22: 751
[28] Guo K X,Ye H Q,Wu Y K. Application of Electron Diffraction Pattern in Crystallography. Beijing: Science Press, 1983: 309 (郭可信,叶恒强,吴玉琨. 电子衍射图在晶体学中的应用. 北京: 科学出版社, 1983: 309)
[29] Yan S, Liu X H, Liu W J. Acta Metall Sin, 2013; 49: 917 (闫 述, 刘相华, 刘伟杰. 金属学报, 2013; 49: 917)
[1] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[2] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[3] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[4] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[5] 谭超林,周克崧,马文有,曾德长. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52.
[6] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[7] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[8] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[9] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[10] 陈雷, 郝硕, 邹宗园, 韩舒婷, 张荣强, 郭宝峰. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在循环变形条件下的力学特性[J]. 金属学报, 2019, 55(12): 1495-1502.
[11] 张敏,贾芳,程康康,李洁,许帅,仝雄伟. 调质处理对G520钢焊接接头组织及性能的影响[J]. 金属学报, 2019, 55(11): 1379-1387.
[12] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[13] 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.
[14] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[15] 胡宽辉, 毛新平, 周桂峰, 刘静, 王志奋. Si和Mn含量对超高强度热成形钢组织和性能的影响[J]. 金属学报, 2018, 54(8): 1105-1112.