Please wait a minute...
金属学报  2015, Vol. 51 Issue (5): 527-536    DOI: 10.11900/0412.1961.2014.00462
  论文 本期目录 | 过刊浏览 |
预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响*
陈连生1(),张健杨1,田亚强1,宋进英1,徐勇1,2,张士宏2
1 河北联合大学河北省现代冶金技术重点实验室, 唐山063009
2 中国科学院金属研究所, 沈阳110016
EFFECT OF Mn PRE-PARTITIONING ON C PARTITIONING AND RETAINED AUSTENITE OF Q&P STEELS
Liansheng CHEN1(),Jianyang ZHANG1,Yaqiang TIAN1,Jinying SONG1,Yong XU1,2,Shihong ZHANG2
1 Hebei Key Laboratory of Modern Metallurgy Technology, Hebei United University, Tangshan 063009
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

陈连生, 张健杨, 田亚强, 宋进英, 徐勇, 张士宏. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响*[J]. 金属学报, 2015, 51(5): 527-536.
Liansheng CHEN, Jianyang ZHANG, Yaqiang TIAN, Jinying SONG, Yong XU, Shihong ZHANG. EFFECT OF Mn PRE-PARTITIONING ON C PARTITIONING AND RETAINED AUSTENITE OF Q&P STEELS[J]. Acta Metall Sin, 2015, 51(5): 527-536.

全文: PDF(12060 KB)   HTML
摘要: 

以低碳Si-Mn钢为研究对象, 采用双相区保温-淬火(IQ)工艺研究预先Mn配分行为, 并对其配分现象进行表征, 采用淬火-配分(Q&P)及双相区保温-奥氏体化-淬火-配分(I&Q&P)热处理工艺, 探讨了预先Mn配分处理对低碳高强Q&P处理钢中C配分和残余奥氏体及力学性能的影响. 结果表明, 实验钢在双相区保温过程中C, Mn不断向奥氏体内扩散, 淬火处理后C, Mn在马氏体(原双相区奥氏体)内呈现明显的富集现象; 实验钢经I&Q&P工艺处理后, 室温组织中Mn富集现象依然很明显, C在马氏体板条间富集; 随着C配分时间的延长, 实验钢抗拉强度不断减小, 延伸率均呈先增加后降低趋势, 在C配分时间为90 s时, I&Q&P工艺下钢的强塑积达到23478 MPa·%; I&Q&P工艺中预先Mn配分处理, 使得实验钢在一次淬火时保留更多的奥氏体, 随后C配分促使更多的C原子扩散到这些奥氏体中, 从而二次淬火至室温获得更多残余奥氏体. I&Q&P工艺中C, Mn的综合作用稳定的残余奥氏体体积分数比相同条件下Q&P工艺中C配分稳定的残余奥氏体体积分数最大增多2.4%左右.

关键词 Mn配分C配分残余奥氏体强塑积    
Abstract

The chemical compositions of C and Mn have a strong influence on the stability of the metastable retained austenite at room temperature. In the intercritical annealing process, Mn element improves the stability of the austenite by partitioning from ferrite to austenite and the enrichment of Mn in austenite can also impact on the diffusion of C element from martensite to retained austenite in partitioning process. Based on C partitioning, Mn partitioning can further improve the product of strength and elongation, and has no negative effect on weldability of the low carbon high strength steel. Thus, it can effectively solve the contradiction between mechanical property and weldability of low carbon high strength steel in traditional quenching-partitioning (Q&P) process. In this case, it is of great significance to study the Mn pre-partitioning mechanism and its influence on C partitioning and retained austenite of the low carbon high strength steel. Therefore, one low alloy C-Si-Mn steel was studied in the present work. The Mn pre-partitioning behavior and its effect on C partitioning and the stability of the retained austenite were investigated by means of intercritical heating-quenching (IQ) process, Q&P and intercritical heatingaustenitizing-quenching-partitioning (I&Q&P) process. The results showed that during the process of phase transformation in the intercritical reheating, C and Mn elements constantly diffused from ferrite to austenite. When this process ended, C and Mn elements enriched in austenite. While Mn element in microstructure at room temperature was still enrichment and C element enriched regularly between the martensite laths in the I&Q&P treated steel. With the increase of C partitioning time in both Q&P and I&Q&P process, the tensile strength of steel was decreased constantly, while the elongation showed an increasing fristly and then decreasing trend. The product of strength and elongation of the steel treated by I&Q&P process reached 23478 MPa·% with the C partitioning time of 90 s. The more austenite in martensite phase would be obtained after the first quenching with the Mn pre-partitioning. It was important to prompt more C diffusing into austenite during C partitioning process to stabilize more retained austenite at room temperature of the steel after the second quenching. With the same experimental conditions, the retained austenite of the combined effects of C and Mn partitioning during I&Q&P process would be increased 2.4% than the effect of C partitioning during Q&P process.

Key wordsMn partitioning    C partitioning    retained austenite    product of strength and elongation
收稿日期: 2014-08-18     
基金资助:*国家自然科学基金项目51254004和51304186, 河北省自然科学基金项目E2014209191及河北省教育厅科研项目YQ2013003资助
作者简介: 陈连生, 男, 1968年生, 教授, 博士
图1  不同的热处理工艺路线图
图2  实验钢热轧后的微观组织
图3  IQ工艺下实验钢的形貌及C和Mn的EPMA分析
图4  IQ工艺下实验钢中C和Mn含量的变化
图5  I&Q&P工艺中C配分时间为90 s时实验钢的形貌及C和Mn的EPMA分析
图6  Q&P工艺处理中不同C配分时间下实验钢的SEM像
图7  I&Q&P工艺处理中不同C配分时间下实验钢的SEM像
图8  Q&P和I&Q&P工艺处理中C配分时间为90 s时实验钢的TEM像和SAED谱
图9  Q&P及I&Q&P工艺中不同配分时间下实验钢的XRD谱
Process t / s mRA / % Rm / MPa A / % Rm·A / MPa·%
Q&P 30 8.4 1360 14.6 19856
90 11.2 1326 16.7 22144
180 9.0 1305 15.2 19836
I&Q&P 30 11.0 1332 16.3 21712
90 13.6 1319 17.8 23478
180 10.4 1298 16.0 20768
表1  Q&P与I&Q&P工艺处理后实验钢的力学性能和残余奥氏体含量
图10  Q&P与I&Q&P工艺下实验钢中残余奥氏体的含C量
图11  实验钢中残余奥氏体的体积分数与奥氏体内Mn含量的关系曲线
[1] Speer J G, Assun??o F C R, Matlock D K, Edmonds D V. Mater Res, 2005; 8: 417
[2] Edmonds D, He K, Rizzo F, De Cooman B, Matlock D, Speer J. Mater Sci Eng, 2006; A438: 25
[3] Clarke A J, Speer J G, Matlock D K, Rizzo F, Edmonds D V, Santofimia M J. Scr Mater, 2009; 61: 149
[4] Li Y, Lu Y P, Wang C, Li S T, Chen L B. J Iron Steel Res Int, 2011; 18(2): 70
[5] Jiang H T, Zhuang B T, Duan X G, Wu Y X, Cai Z X. Int J Miner Metall Mater, 2013; 20: 105
[6] Paravicini B E, Santofimia M, Zhao L, Sietsma J, Anelli E. Mater Sci Eng, 2013; A559: 486
[7] Wu R, Wang L, Jin X. Phys Procedia, 2013; 50: 8
[8] Zhong N. PhD Dissertation, Shanghai Jiao Tong University, 2009 (钟 宁. 上海交通大学博士学位论文, 2009)
[9] Wang Y. PhD Dissertation, Shanghai Jiao Tong University, 2013 (王 颖. 上海交通大学博士学位论文, 2013)
[10] Oi S W, Hill P, Rawson M, Bhadeshia H. Mater Sci Eng, 2013; A564: 485
[11] Wu Q, Shanthraj P, Zikry M A. Int J Fracture, 2013; 184: 241
[12] Paravicini B E, Santofimia M, Zhao L, Sietsma J, Anelli E. Mater Sci Eng, 2013; A559: 486
[13] Li D Z, Wei Y H, Liu C Y, Hou L F, Liu D F, Ya T X, Hu Y T. J Iron Steel Res, 2009; 21(2): 1 (李大赵, 卫英慧, 刘春月, 侯利锋, 刘东风, 崖天燮, 胡玉亭. 钢铁研究学报, 2009; 21(2): 1)
[14] Zhang M. PhD Dissertation, Shanghai University, 2007 (张 梅. 上海大学博士学位论文, 2007)
[15] Yu S F, Qian B N, Guo X M. Acta Metall Sin, 2005; 41: 402 (于少飞, 钱百年, 国旭明. 金属学报, 2005; 41: 402)
[16] Lee S, Lee S J, De Cooman B C. Scr Mater, 2011; 65: 225
[17] Toji Y, Yamashita T, Nakajima K, Okuda K, Matsuda H, Hasegawa K, Seto K. ISIJ Int, 2011; 51: 818
[18] De Moor E, Matlock D K, Speer J G, Merwin M J. Scr Mater, 2011; 64: 185
[19] Garcia C I, De Ardo A J. Metall Trans, 1981; 12A: 521
[20] Speich G R, Demarest V A, Miller R L. Metall Trans, 1981; 12(8): 1419
[21] Lee S J, Lee S, De Cooman B C. Scr Mater, 2011; 64: 649
[22] Tian Y Q, Zhang H J, Chen L S, Song J Y, Xu Y, Zhang S H. Acta Metall Sin, 2014; 50: 531 (田亚强, 张宏军, 陈连生, 宋进英, 徐 勇, 张士宏. 金属学报, 2014, 50: 531)
[23] Chen L S, Zhao Y, Tian Y Q, Song J Y, Wei Y L, Yang D. J Mater Eng, 2014; (6): 5 (陈连生, 赵 远, 田亚强, 宋进英, 魏英立, 杨 栋. 材料工程, 2014; (6): 5)
[24] Chen L S, Zhang J Y, Tian Y Q, Song J Y, Wei Y L, Zhao Y. J Iron Steel Res, 2014; 26(5): 72 (陈连生, 张健杨, 田亚强, 宋进英, 魏英立, 赵 远. 钢铁研究学报, 2014; 26(5): 72)
[25] Maruyama H. J Jpn Soc Heat Treat, 1977; 17: 198
[26] Nishiyama Z. Martensitic Transformations. New York: Academic Press, 1978: 60
[27] Li N, Liu G Q, Kang R M, Yang Y, Yu H. Trans Mater Heat Treat, 2013; 34(3): 118 (李 娜, 刘国权, 康人木, 杨 云, 余 慧. 材料热处理学报, 2013; 34(3): 118)
[28] Yang H F, Wang L, Feng W J, Lu F G. Hot Work Technol, 2011; 40(18): 148 (杨海峰, 王 利, 冯伟骏, 芦凤桂. 热加工工艺, 2011; 40(18): 148)
[29] Long C X. PhD Dissertation, Hunan University, Changsha, 2012 (龙彩霞. 湖南大学博士学位论文, 长沙, 2012)
[30] Wang M J, Ma Q, Li J L, Zhang Y, Wang Y, Chen L. J Yanshan Univ, 2013; 37: 385 (王明家, 马 千, 李景丽, 张 勇, 王 艳, 陈 雷. 燕山大学学报, 2013; 37: 385)
[31] Xu Z Y. Trans Mater Heat Treat, 2009; (6): 1 (徐祖耀. 金属热处理, 2009; (6): 1)
[32] Mahieu J, Maki J, De Cooman B C, Claessens S. Metall Mater Trans, 2002; 33A: 2573
[33] H?mberg D. J Appl Math, 1995; 54(1): 31
[1] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[2] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[3] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[4] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[5] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[6] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[7] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[8] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[9] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[10] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[11] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[12] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[13] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
[14] 李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响*[J]. 金属学报, 2015, 51(5): 537-544.
[15] 周文浩, 谢振家, 郭晖, 尚成嘉. 700 MPa级高塑低碳低合金钢的多相组织调控及性能[J]. 金属学报, 2015, 51(4): 407-416.