Please wait a minute...
金属学报  2014, Vol. 50 Issue (6): 753-761    DOI: 10.3724/SP.J.1037.2013.00726
  论文 本期目录 | 过刊浏览 |
不同制备条件下原位Mg2Si/Al复合材料的组织演变和耐磨性*
刘晓波1,2), 赵宇光1)
1) 吉林大学材料科学与工程学院, 长春 130022
2) 北华大学机械工程学院, 吉林 132021
MICROSTRUCTURE EVOLUTION AND WEAR RESISTANCE OF IN SITU Mg2Si/Al COMPOSITES UNDER DIFFERENT PREPARATION CONDITIONS
LIU Xiaobo 1, 2), ZHAO Yuguang 1)
1) College of Materials Science and Engineering, Jilin University, Changchun 130022
2) College of Mechanical Engineering, Beihua University, Jilin 132021
全文: PDF(8224 KB)   HTML
摘要: 

采用普通重力铸造、挤压铸造和等温热处理半固态挤压的方法制备了原位Mg2Si/Al复合材料, 研究了其组织演变和耐磨性. 结果表明, P孕育变质后,铸态组织中Mg2Si增强相由粗大的枝晶转变为细小的块状,经过等温热处理后的半固态组织, Mg2Si增强相分布均匀、尺寸细小,表现为规则的球形, a-Al的形貌也变得较为圆整, 表现为规则的球状或椭球状. 此外, 等温热处理的半固态组织中的Mg2Si和a-Al尺寸还有较为明显的改变. 与普通重力铸造Mg2Si/Al复合材料相比, 挤压铸造复合材料的HB硬度提高了23.5%, 半固态挤压复合材料的HB硬度提高了39%. 在相同磨粒尺寸和载荷条件下, 普通重力铸造复合材料的磨损率最大, 挤压铸造复合材料的磨损率次之, 半固态挤压复合材料的磨损率最小.

关键词 原位Mg2Si/Al复合材料等温热处理组织演变球化耐磨性    
Abstract:Hypereutectic Al-Si alloys with high Mg content are in fact an in situ aluminium matrix composites containing a large amount of hard particles of Mg2Si, and the Mg2Si/Al composite has a potential as automobile brake disc material because the intermetallic compound Mg2Si exhibits high melting temperature, low density, high hardness, low thermal expansion coefficient (TEC) and reasonably high elastic modulus. However, the primary Mg2Si particles in normal Mg2Si/Al composites are usually very coarse and thus lead to room temperature brittleness and deficient wear resistance. Therefore, the composite with coarse primary Mg2Si particles need to be modified to obtain adequate mechanical strength and wear resistance. Numerous experiments have shown that development of a semi-solid microstructure in which dendritic characteristic is absent can lead to significant enhancement of the mechanical properties in the composite. The semi-solid forming has been recognized as a technique offering several potential advantages over casting or solid state forming, such as producing high quality components capable of full heat treatment to maximize properties, and reducing macrosegregation, solidification shrinkage and forming temperature. The key feature that permits the shaping of alloys in the semi-solid state is the absence of dendritic characteristics from the morphology of the solid phase. In the present work, in situ Mg2Si/Al composites were fabricated by using gravity casting, squeeze casting and semi-solid extrusion. The microstructure evolution and wear resistance of Mg2Si/Al composites were investigated. Mg2Si/Al semi-solid composites were fabricated by isothermal heat treatment technology, forming spherical reinforced phase and matrix structure. The effects of holding time on the microstructure and grain sizes of the composite were investigated. The results show that with P modification, Mg2Si particle in the as-cast microstructure of the composites is evolved from coarse dendrite into fine block structure with grain size of 35 μm. Furthermore, reinforcement Mg2Si with fine size and uniformly distribution exhibits regular spherical structure and a-Al grains exhibit spherical or ellipsoidal structure. The size of a-Al changes from 60 to 115 μm with increasing the holding time from 50 to 160 min. It is calculated that the cubic coarsening rate constants K of a-Al is 1.78×10-16 m3/s according to the statistical data. In addition, the hardness of squeeze casting and semi-solid extrusion composites enhanced 23.5% and 39% in comparison with casting composite, respectively. The wear test results show that, the wear resistance of Mg2Si/Al composite fabricated by using semi-solid extrusion is higher than those of composites fabricated by using gravity casting and squeeze casting under same load and wear particle size.
Key wordsin situ Mg2Si/Al composite    isothermal heat treatment    microstructure evolution    spheroidization    wear resistance
收稿日期: 2013-11-13     
ZTFLH:  TB331  
基金资助:* 国家自然科学基金项目50671044和吉林省科技发展计划项目20070506资助
作者简介: 刘晓波, 女, 1979年生, 讲师, 博士

引用本文:

刘晓波, 赵宇光. 不同制备条件下原位Mg2Si/Al复合材料的组织演变和耐磨性*[J]. 金属学报, 2014, 50(6): 753-761.
LIU Xiaobo, ZHAO Yuguang. MICROSTRUCTURE EVOLUTION AND WEAR RESISTANCE OF IN SITU Mg2Si/Al COMPOSITES UNDER DIFFERENT PREPARATION CONDITIONS. Acta Metall Sin, 2014, 50(6): 753-761.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00726      或      https://www.ams.org.cn/CN/Y2014/V50/I6/753

[1] Qin Q D, Zhao Y G, Xiu K, Zhou W, Liang Y H. Mater Sci Eng, 2005; A407: 196
[2] Jiang Q C, Wang H Y, Wang Y, Ma B X, Wang J G. Mater Sci Eng, 2005; A392: 130
[3] Zhang J, Fan Z, Wang Y Q, Zhou B L. Mater Sci Eng, 2000; A281: 104
[4] Zhang G J, Wang Y Q, Yang B, Zhou B L. J Mater Res, 1999; 14: 68
[5] Zhang J, Fan Z, Wang Y Q, Zhou B L. Scr Mater, 2000; 42: 1101 
[6] Zhang J, Fan Z, Wang Y Q, Zhou B. J Mater Sci Lett, 1999; 18: 783
[7] Li C. PhD Dissertation, Shandong University, Jinan, 2012
(李 冲. 山东大学博士学位论文, 济南, 2012)
[8] Ren Y Y. PhD Dissertation, Shenyang University of Technology, 2012
(任玉艳. 沈阳工业大学博士学位论文, 2012)
[9] Spencer D B, Mehrabian R, Flemings M C. Metall Trans, 1972; 3A: 1925
[10] Atkinson H V. Prog Mater Sci, 2005; 50: 341
[11] Wang J L, Su Y H, Tsao C Y A. Scr Mater, 1997; 37: 2003
[12] Vives C. Metall Mater Trans, 1992; 23B: 189
[13] Li S S, Zhao A M, Mao W M, Zhong X Y, Han Y F. Acta Metall Sin, 2000; 36: 545
(李树索, 赵爱民, 毛卫民, 钟雪友, 韩雅芳. 金属学报, 2000; 36: 545)
[14] Liu H M, He J P, Yang B, Zhang J S. Acta Metall Sin, 2006; 42: 158
(刘慧敏, 何建平, 杨 滨, 张济山. 金属学报, 2006; 42: 158)
[15] Guan L N, Geng L, Zhang H W, Huang L J. Trans Nonferrous Met Soc China, 2011; 21: s274
[16] Mohammadi H, Ketabchi M, Kalaki A. J Mater Eng Perform, 2011; 20: 1256
[17] Qin Q D. PhD Dissertation, Jilin University, Changchun, 2008
(秦庆东. 吉林大学博士学位论文, 长春, 2008)
[18] Qin Q D, Zhao Y G, Cong P J, Zhou W, Xu B. Mater Sci Eng, 2007; A444: 99
[19] Canyook R, Petsut S, Wisutmethangoon S, Flemings M C, Wannasin J. Trans Nonferrous Met Soc China, 2010; 20: 1649
[20] Zhang J, Fan Z, Wang Y Q, Zhou B L. J Mater Sci Lett, 2000; 19: 1825
[21] Qin Q D, Zhao Y G, Zhou W, Cong P J. Mater Sci Eng, 2007; A447: 186
[22] Manson-Whitton E D. PhD Dissertation, University of Oxford, 1999
[23] Manson-Whitton E D, Stone I C, Jones J R, Grant P S, Cantor B. Acta Mater, 2002; 50: 2517
[24] Hu H Q. Metal Solidification Principle. Beijing: China Machine Press, 2000: 105
(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2000: 105)
[25] Loue W R, Suery M. Mater Sci Eng, 1995; A203: 1
[26] Ferrante M, De Freitas E. Mater Sci Eng, 1999; A271: 172
[1] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[2] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[3] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[4] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[5] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[6] 毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.
[7] 王永金, 宋仁伯, 宋仁峰. 9Cr18合金半固态触变压缩变形行为及组织演变[J]. 金属学报, 2018, 54(1): 39-46.
[8] 崔君军,陈礼清,李海智,佟伟平. 等温淬火低合金贝氏体球墨铸铁的回火组织与力学性能*[J]. 金属学报, 2016, 52(7): 778-786.
[9] 何波,聂庆武,张洪宇,韦华. 固溶处理对CoCrW合金组织及耐磨性能的影响*[J]. 金属学报, 2016, 52(4): 484-490.
[10] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[11] 杨亮,高叔博,王艳丽,叶腾,宋霖,林均品. Si对高Nb-TiAl合金组织及室温拉伸性能的影响*[J]. 金属学报, 2015, 51(7): 859-865.
[12] 祁明凡, 康永林, 周冰, 朱国明, 张欢欢. 强制对流搅拌流变压铸AZ91D镁合金的组织与性能*[J]. 金属学报, 2015, 51(6): 668-676.
[13] 袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*[J]. 金属学报, 2015, 51(6): 651-658.
[14] 马利平, 梁志强, 王西彬, 赵文祥, 焦黎, 刘志兵. 脉冲磁化处理对M42高速钢刀具组织和力学性能的影响[J]. 金属学报, 2015, 51(3): 307-314.
[15] 许虹宇,黄陆军,耿林,张杰,黄玉东. Cu含量对Al2O3·SiO2sf/Al-Cu复合材料耐磨性能的影响[J]. 金属学报, 2013, 49(9): 1131-1136.