Please wait a minute...
金属学报  2021, Vol. 57 Issue (2): 247-256    DOI: 10.11900/0412.1961.2020.00381
  研究论文 本期目录 | 过刊浏览 |
W-Ni-Fe三元合金等离子球化过程的SPH仿真研究
侯玉柏1,2,3, 于月光2(), 郭志猛1
1.北京科技大学 新材料技术研究院 北京 100083
2.矿冶科技集团有限公司 北京 100160
3.北矿新材科技有限公司 北京 102206
Simulation Study of Smoothed Particle Hydrodynamics (SPH) Method in Plasma Spheroidization of W-Ni-Fe Ternary Alloys
HOU Yubai1,2,3, YU Yueguang2(), GUO Zhimeng1
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.BGRIMM Technology Group, Beijing 100160, China
3.BGRIMM Advanced Materials Science & Technology Co. , Ltd. , Beijing 102206, China
引用本文:

侯玉柏, 于月光, 郭志猛. W-Ni-Fe三元合金等离子球化过程的SPH仿真研究[J]. 金属学报, 2021, 57(2): 247-256.
Yubai HOU, Yueguang YU, Zhimeng GUO. Simulation Study of Smoothed Particle Hydrodynamics (SPH) Method in Plasma Spheroidization of W-Ni-Fe Ternary Alloys[J]. Acta Metall Sin, 2021, 57(2): 247-256.

全文: PDF(3191 KB)   HTML
摘要: 

针对表面张力影响下的W-Ni-Fe三元合金,通过光滑粒子流体动力学(SPH)建立了仿真多元金属液滴碰撞融合过程的数值模型,获得了流体在等离子球化过程中的流场和温度分布。结果表明,W的占比越高、粒径越小、环境温度越高、Marangoni力越大,则球化度越好。根据SPH模拟结果选择了平均粒径1.5 μm的W粉、平均粒径4.1 μm的Ni粉和平均粒径2.4 μm的Fe粉为原料,按照质量比W∶Ni∶Fe=90∶7∶3进行喷雾造粒,在等离子焰流温度为8000℃条件下球化,球化后的三元合金粉末球形度好,内部致密。球化后颗粒流动性为11.62 s/50 g,松装密度10.66 g/cm3,有利于使用铺粉方法进行3D打印。证实了SPH仿真结果可靠,该模拟结果可用于指导难熔金属W的等离子球化制备工艺。

关键词 光滑粒子流体动力学金属液滴融合等离子球化    
Abstract

Metal additive manufacturing three-dimensional printing technology is widely used in the manufacturing industry. This technology is an important scientific and technological achievement in the field of world-class manufacturing, and it has influenced and changed the ways of production, which has brought great changes in the manufacturing field. The plasma spheroidization process can provide a better rate of spheroidization for refractory metals. Smoothed particle hydrodynamics (SPH) is a mesh-less Lagrangian method to simulate a flow field and enable heat transfer. This method has shown great potential for replacing the traditional numerical methods and has been successfully used to simulate the collision and fusion process of metal droplets during plasma spheroidization. In this study, the SPH technique has been employed to simulate the collision and fusion processes of multiple metal droplets of a W-Ni-Fe ternary alloy in plasma spheroidization with the consideration of the effect of surface tension. The spheroidization process has been visualized with fluid evolution in terms of the flow field and temperature distribution. A high spheroidization quality is found in a system with the a high amount of tungsten, small tungsten particle size, high processing environment temperature, and large Marangoni force. To check the simulation results, spheroidization experiments have been conducted using the following raw materials: tungsten powder with an average particle size of 1.5 μm, nickel powder with an average particle size of 4.1 μm, and iron powder with an average particle size of 2.4 μm. The raw materials were mixed with a mass ratio of W∶Ni∶Fe=90∶7∶3 and then spheroidized at 8000oC. The achieved ternary alloy powder has high sphericity and dense internal structure. The flowability of the powders is 11.62 s/50 g. The apparent density is 10.66 g/cm3. The resulting products show high precision and good efficiency. The experiments confirm the consistency of SPH simulation. The simulation results can be used to guide development in the fabrication process of the spheroidized powder of refractory metals, such as tungsten.

Key wordssmoothed particle hydrodynamics (SPH)    metal droplet    fusion    plasma    spheroidization
收稿日期: 2020-09-22     
ZTFLH:  TG146.4  
基金资助:国家重点研发计划项目(2017YFB0305800)
作者简介: 侯玉柏,男,1978年生,教授,博士
图1  W-Ni-Fe三元合金光滑粒子流体动力学(SPH)模型
ElementDensityViscosityThermal conductivitySurface tension coefficientSpecific heat capacity
103 kg·m-310-3 Pa·sW·m-1·K-1N·m-1J·kg-1·K-1
Fe7.86.440.02.04460
Ni8.96.090.73.10447
W19.36.591.32.50466
表1  材料物性参数
ModelMass ratio of W∶Ni∶FeTemperatureDiameter of WMarangoni coefficient
oCμm
190∶7∶350003.05.8
285∶10.5∶4.5
380∶14∶6
490∶7∶350003.05.8
58000
610000
790∶7∶350002.55.8
83.0
93.5
1090∶7∶350003.00.058
110.58
125.8
表2  不同工况的建模参数
图2  利用SPH方法计算的不同条件下液滴碰撞模拟结果分布图
图3  W-Ni-Fe三元合金在不同元素配比下(模型1~3)的液滴融合状态(a) W∶Ni∶Fe=90∶7∶3 (b) W∶Ni∶Fe=85∶10.5∶4.5 (c) W∶Ni∶Fe=80∶14∶6
图4  W-Ni-Fe三元合金在不同温度下(模型4~6)的液滴融合状态(a) 5000oC (b) 8000oC (c) 10000oC
图5  W-Ni-Fe三元合金在不同W液滴直径下(模型7~9)的液滴融合状态(a) 2.5 μm (b) 3.0 μm (c) 3.5 μm
图6  W-Ni-Fe三元合金在不同Marangoni系数(模型10~12)时的液滴融合状态(a) 0.058 (b) 0.58 (c) 5.8
ModelSpheroidization ratioCompactness
189.37%96.35%
285.64%80.08%
382.75%97.85%
481.34%96.85%
570.71%97.97%
690.34%98.58%
780.33%98.71%
889.37%96.35%
985.26%97.65%
1079.01%96.85%
1186.61%97.66%
1295.26%100.00%
表3  不同条件下W-Ni-Fe三元合金的融合数据
图7  不同条件下液滴融合后的球化度及致密度曲线(a) models 1-3 (b) models 4-6 (c) models 7-9 (d) models 10-12
图 8  W-Ni-Fe三元合金球化前后的SEM像
图9  W-Ni-Fe三元合金球化后的SEM像和EDS分析
1 Shuai S S, Lin X, Xiao W Q, et al. Effect of transverse static magnetic field on microstructure of Al-12%Si alloys fabricated by powder-blow additive manufacturing [J]. Acta Metall. Sin., 2018, 54: 918
1 帅三三, 林 鑫, 肖武泉等. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响 [J]. 金属学报, 2018, 54: 918
2 Zhang Y J, Wang H B, Song X Y, et al. Preparation and performance of spherical Ni powder for SLM processing [J]. Acta Metall. Sin., 2018, 54: 1833
2 张亚娟, 王海滨, 宋晓艳等. SLM球形Ni粉的制备与打印工艺性能 [J]. 金属学报, 2018, 54: 1833
3 Bárdos L, Baránková H. Plasma processes at atmospheric and low pressures [J]. Vacuum, 2008, 83: 522
4 Kobayashi A, Sharafat S, Ghoniem N M. Formation of tungsten coatings by gas tunnel type plasma spraying [J]. Surf. Coat. Technol., 2006, 200: 4630
5 Kumar S, Na H, Selvarajan V, et al. Influence of metal powder shape on drag coefficient in a spray jet [J]. Curr. Appl. Phys., 2009, 9: 678
6 Zhang T, Yan W, Xie Z M, et al. Recent progress of oxide/carbide dispersion strengthened W-based materials [J]. Acta Metall. Sin., 2018, 54: 831
6 张 涛, 严 玮, 谢卓明等. 碳化物/氧化物弥散强化钨基材料研究进展 [J]. 金属学报, 2018, 54: 831
7 Kumar S, Selvarajan V. Plasma spheroidization of iron powders in a non-transferred DC thermal plasma jet [J]. Mater. Charact., 2008, 59: 781
8 Zhou H B, Li Y H, Lu G H. Modeling and simulation of hydrogen behavior in tungsten [J]. Acta Metall. Sin., 2018, 54: 301
8 周洪波, 李宇浩, 吕广宏. W中H行为的计算模拟研究 [J]. 金属学报, 2018, 54: 301
9 Nam J S, Park E, Seo J H. Numerical analysis of radio-frequency inductively coupled plasma spheroidization of titanium metal powder under single particle and dense loading conditions [J]. Met. Mater. Int., 2020, 26: 491
10 Bernardi D, Colombo V, Ghedini E, et al. 3-D numerical simulation of fully-coupled particle heating in ICPTs [J]. Eur. Phys. J., 2004, 28D: 423
11 Morris J P. Simulating surface tension with smoothed particle hydrodynamics [J]. Int. J. Numer. Meth. Fluids, 2000, 33: 333
12 Tong M M, Browne D J. An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow [J]. Int. J. Heat Mass Transf., 2014, 73: 284
13 Russell M A, Souto-Iglesias A, Zohdi T I. Numerical simulation of laser fusion additive manufacturing processes using the SPH method [J]. Comput. Methods Appl. Mech. Eng., 2018, 341: 163
14 Zhang M Y. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method [J]. J. Comput. Phys., 2010, 229: 7238
15 Olsson E, Kreiss G. A conservative level set method for two phase flow [J]. J. Comput. Phys., 2005, 210: 225
16 Monaghan J J. Smoothed particle hydrodynamics [J]. Rep. Prog. Phys., 2005, 68: 1703
17 Liu M B, Liu G R. Smoothed particle hydrodynamics (SPH): An overview and recent developments [J]. Arch. Comput. Methods Eng., 2010, 17: 25
18 Huang C, Long T, Li S M, et al. A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils [J]. Eng. Anal. Boundary Elem., 2019, 106: 571
19 Wang L, Xu F, Yang Y. SPH scheme for simulating the water entry of an elastomer [J]. Ocean Eng., 2019, 178: 233
20 Niu X F, Zhao J Y, Wang B J. Application of smooth particle hydrodynamics (SPH) method in gravity casting shrinkage cavity prediction [J]. Comput. Part. Mech., 2019, 6: 803
21 Liu G R, Liu M B. translated by Han X, Yang G, Qiang H F. Smoothed Particle Hydrodynamics: A Meshfree Particle Method [M]. Changsha: Hunan University Press, 2005: 39
21 Liu G R, Liu M B著, 韩 旭, 杨 刚, 强洪夫译. 光滑粒子流体动力学——一种无网格粒子法 [M]. 长沙: 湖南大学出版社, 2005: 39
22 Monaghan J J. Smoothed particle hydrodynamics [J]. Annu. Rev. Astron. Astrophys., 1992, 30: 543
23 Lind S J, Stansby P K, Rogers B D, et al. Numerical predictions of water-air wave slam using incompressible-compressible smoothed particle hydrodynamics [J]. Appl. Ocean Res., 2015, 49: 57
24 Lind S J, Stansby P K, Rogers B D. Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH) [J]. J. Comput. Phys., 2016, 309: 129
25 Qiang H F, Liu H, Chen F Z, et al. Experimental Study on Atomization of Gel-Propellant and Numerical Simulation of SPH [M]. Beijing: Science Press, 2019: 115
25 强洪夫, 刘 虎, 陈福振等. 凝胶推进剂雾化的实验与SPH数值模拟研究 [M]. 北京: 科学出版社, 2019: 115
26 Qian J, Law C K. Regimes of coalescence and separation in droplet collision [J]. J. Fluid Mech., 1997, 331: 59
27 Qin S S, Yu Y, Zeng G Y, et al. Research on the preparation of metal powder for 3D printing [J]. Powder Metall. Ind., 2016, 26(5): 21
27 覃思思, 余 勇, 曾归余等. 3D打印用金属粉末的制备研究[J]. 粉末冶金工业, 2016, 26(5): 21
28 Liang Y R, Wu Y J. Production technology of titanium and its alloy spherical powders used in 3D printing [J]. World Nonferrous Met., 2016, (6): 150
28 梁永仁, 吴引江. 3D打印用钛及钛合金球形粉末制备技术 [J]. 世界有色金属, 2016, (6): 150
[1] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[2] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[3] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.
[4] 彭吴擎亮, 李强, 常永勤, 王万景, 陈镇, 谢春意, 王纪超, 耿祥, 黄伶明, 周海山, 罗广南. 核聚变堆偏滤器热沉材料研究现状及展望[J]. 金属学报, 2021, 57(7): 831-844.
[5] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[6] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[7] 刘泽, 宁汉维, 林彰乾, 王东君. SPS烧结参数对NiAl-28Cr-5.5Mo-0.5Zr合金微观组织及室温力学性能的影响[J]. 金属学报, 2021, 57(12): 1579-1587.
[8] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[9] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[10] 吴玉程. 核聚变堆用W及其合金辐照损伤行为研究进展[J]. 金属学报, 2019, 55(8): 939-950.
[11] 吴玉程. 面向等离子体W材料改善韧性的方法与机制[J]. 金属学报, 2019, 55(2): 171-180.
[12] 邵盈恺, 王玉玺, 杨志斌, 史春元. 基于焊缝熔深优化的7075铝合金等离子-MIG复合焊接热裂纹敏感性[J]. 金属学报, 2018, 54(4): 547-556.
[13] 周洪波, 李宇浩, 吕广宏. W中H行为的计算模拟研究[J]. 金属学报, 2018, 54(2): 301-313.
[14] 陈树君,徐斌,蒋凡. 变极性等离子弧焊电弧物理特性的数值模拟[J]. 金属学报, 2017, 53(5): 631-640.
[15] 康利梅,杨超,李元元. 半固态烧结法制备高强韧新型双尺度结构钛合金[J]. 金属学报, 2017, 53(4): 440-446.