Please wait a minute...
金属学报  2014, Vol. 50 Issue (6): 753-761    DOI: 10.3724/SP.J.1037.2013.00726
  本期目录 | 过刊浏览 |
不同制备条件下原位Mg2Si/Al复合材料的组织演变和耐磨性*
刘晓波1,2, 赵宇光1
1 吉林大学材料科学与工程学院, 长春 130022
2 北华大学机械工程学院, 吉林 132021
MICROSTRUCTURE EVOLUTION AND WEAR RESISTANCE OF IN SITU Mg2Si/Al COMPOSITES UNDER DIFFERENT PREPARATION CONDITIONS
LIU Xiaobo1,2, ZHAO Yuguang1
1 College of Materials Science and Engineering, Jilin University, Changchun 130022
2 College of Mechanical Engineering, Beihua University, Jilin 132021
引用本文:

刘晓波, 赵宇光. 不同制备条件下原位Mg2Si/Al复合材料的组织演变和耐磨性*[J]. 金属学报, 2014, 50(6): 753-761.
Xiaobo LIU, Yuguang ZHAO. MICROSTRUCTURE EVOLUTION AND WEAR RESISTANCE OF IN SITU Mg2Si/Al COMPOSITES UNDER DIFFERENT PREPARATION CONDITIONS[J]. Acta Metall Sin, 2014, 50(6): 753-761.

全文: PDF(8224 KB)   HTML
摘要: 

采用普通重力铸造、挤压铸造和等温热处理半固态挤压的方法制备了原位Mg2Si/Al复合材料, 研究了其组织演变和耐磨性. 结果表明, P孕育变质后,铸态组织中Mg2Si增强相由粗大的枝晶转变为细小的块状,经过等温热处理后的半固态组织, Mg2Si增强相分布均匀、尺寸细小,表现为规则的球形, α-Al的形貌也变得较为圆整, 表现为规则的球状或椭球状. 此外, 等温热处理的半固态组织中的Mg2Si和α-Al尺寸还有较为明显的改变. 与普通重力铸造Mg2Si/Al复合材料相比, 挤压铸造复合材料的HB硬度提高了23.5%, 半固态挤压复合材料的HB硬度提高了39%. 在相同磨粒尺寸和载荷条件下, 普通重力铸造复合材料的磨损率最大, 挤压铸造复合材料的磨损率次之, 半固态挤压复合材料的磨损率最小.

关键词 原位Mg2Si/Al复合材料等温热处理组织演变球化耐磨性    
Abstract

Hypereutectic Al-Si alloys with high Mg content are in fact an in situ aluminium matrix composites containing a large amount of hard particles of Mg2Si, and the Mg2Si/Al composite has a potential as automobile brake disc material because the intermetallic compound Mg2Si exhibits high melting temperature, low density, high hardness, low thermal expansion coefficient (TEC) and reasonably high elastic modulus. However, the primary Mg2Si particles in normal Mg2Si/Al composites are usually very coarse and thus lead to room temperature brittleness and deficient wear resistance. Therefore, the composite with coarse primary Mg2Si particles need to be modified to obtain adequate mechanical strength and wear resistance. Numerous experiments have shown that development of a semi-solid microstructure in which dendritic characteristic is absent can lead to significant enhancement of the mechanical properties in the composite. The semi-solid forming has been recognized as a technique offering several potential advantages over casting or solid state forming, such as producing high quality components capable of full heat treatment to maximize properties, and reducing macrosegregation, solidification shrinkage and forming temperature. The key feature that permits the shaping of alloys in the semi-solid state is the absence of dendritic characteristics from the morphology of the solid phase. In the present work, in situ Mg2Si/Al composites were fabricated by using gravity casting, squeeze casting and semi-solid extrusion. The microstructure evolution and wear resistance of Mg2Si/Al composites were investigated. Mg2Si/Al semi-solid composites were fabricated by isothermal heat treatment technology, forming spherical reinforced phase and matrix structure. The effects of holding time on the microstructure and grain sizes of the composite were investigated. The results show that with P modification, Mg2Si particle in the as-cast microstructure of the composites is evolved from coarse dendrite into fine block structure with grain size of 35 μm. Furthermore, reinforcement Mg2Si with fine size and uniformly distribution exhibits regular spherical structure and α-Al grains exhibit spherical or ellipsoidal structure. The size of α-Al changes from 60 to 115 μm with increasing the holding time from 50 to 160 min. It is calculated that the cubic coarsening rate constants K of α-Al is 1.78×10-16 m3/s according to the statistical data. In addition, the hardness of squeeze casting and semi-solid extrusion composites enhanced 23.5% and 39% in comparison with casting composite, respectively. The wear test results show that, the wear resistance of Mg2Si/Al composite fabricated by using semi-solid extrusion is higher than those of composites fabricated by using gravity casting and squeeze casting under same load and wear particle size.

Key wordsin situ Mg2Si/Al composite    isothermal heat treatment    microstructure evolution    spheroidization    wear resistance
收稿日期: 2013-11-13     
ZTFLH:  TB331  
基金资助:* 国家自然科学基金项目50671044和吉林省科技发展计划项目20070506资助
作者简介: null

作者简介: 刘晓波, 女, 1979年生, 讲师, 博士

图1  Mg2Si/Al复合材料的XRD谱
图2  普通重力铸造和挤压铸造Mg2Si/Al复合材料的显微组织
图3  铸态Mg2Si/Al复合材料DTA曲线
图4  半固态挤压Mg2Si/Al复合材料的显微组织
图5  半固态Mg2Si/Al复合材料在挤压比压为255 MPa保温不同时间后的显微组织
图6  Mg2Si/Al复合材料磨损体积与载荷的关系曲线
图7  Mg2Si/Al复合材料磨损体积与磨粒尺寸的关系曲线
图8  变质后的半固态Mg2Si/Al复合材料的显微组织演变过程示意图
[1] Qin Q D, Zhao Y G, Xiu K, Zhou W, Liang Y H. Mater Sci Eng, 2005; A407: 196
[2] Jiang Q C, Wang H Y, Wang Y, Ma B X, Wang J G. Mater Sci Eng, 2005; A392: 130
[3] Zhang J, Fan Z, Wang Y Q, Zhou B L. Mater Sci Eng, 2000; A281: 104
[4] Zhang G J, Wang Y Q, Yang B, Zhou B L. J Mater Res, 1999; 14: 68
[5] Zhang J, Fan Z, Wang Y Q, Zhou B L. Scr Mater, 2000; 42: 1101
[6] Zhang J, Fan Z, Wang Y Q, Zhou B. J Mater Sci Lett, 1999; 18: 783
[7] Li C. PhD Dissertation, Shandong University, Jinan, 2012
[7] (李冲. 山东大学博士学位论文, 济南, 2012)
[8] Ren Y Y. PhD Dissertation, Shenyang University of Technology, 2012
[8] (任玉艳. 沈阳工业大学博士学位论文, 2012)
[9] Spencer D B, Mehrabian R, Flemings M C. Metall Trans, 1972; 3A: 1925
[10] Atkinson H V. Prog Mater Sci, 2005; 50: 341
[11] Wang J L, Su Y H, Tsao C Y A. Scr Mater, 1997; 37: 2003
[12] Vives C. Metall Mater Trans, 1992; 23B: 189
[13] Li S S, Zhao A M, Mao W M, Zhong X Y, Han Y F. Acta Metall Sin, 2000; 36: 545
[13] (李树索, 赵爱民, 毛卫民, 钟雪友, 韩雅芳. 金属学报, 2000; 36: 545)
[14] Liu H M, He J P, Yang B, Zhang J S. Acta Metall Sin, 2006; 42: 158
[14] (刘慧敏, 何建平, 杨 滨, 张济山. 金属学报, 2006; 42: 158)
[15] Guan L N, Geng L, Zhang H W, Huang L J. Trans Nonferrous Met Soc China, 2011; 21: s274
[16] Mohammadi H, Ketabchi M, Kalaki A. J Mater Eng Perform, 2011; 20: 1256
[17] Qin Q D. PhD Dissertation, Jilin University, Changchun, 2008
[17] (秦庆东. 吉林大学博士学位论文, 长春, 2008)
[18] Qin Q D, Zhao Y G, Cong P J, Zhou W, Xu B. Mater Sci Eng, 2007; A444: 99
[19] Canyook R, Petsut S, Wisutmethangoon S, Flemings M C, Wannasin J. Trans Nonferrous Met Soc China, 2010; 20: 1649
[20] Zhang J, Fan Z, Wang Y Q, Zhou B L. J Mater Sci Lett, 2000; 19: 1825
[21] Qin Q D, Zhao Y G, Zhou W, Cong P J. Mater Sci Eng, 2007; A447: 186
[22] Manson-Whitton E D. PhD Dissertation, University of Oxford, 1999
[23] Manson-Whitton E D, Stone I C, Jones J R, Grant P S, Cantor B. Acta Mater, 2002; 50: 2517
[24] Hu H Q. Metal Solidification Principle. Beijing: China Machine Press, 2000: 105
[24] (胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2000: 105)
[25] Loue W R, Suery M. Mater Sci Eng, 1995; A203: 1
[26] Ferrante M, De Freitas E. Mater Sci Eng, 1999; A271: 172
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[5] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[6] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[8] 侯玉柏, 于月光, 郭志猛. W-Ni-Fe三元合金等离子球化过程的SPH仿真研究[J]. 金属学报, 2021, 57(2): 247-256.
[9] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[10] 刘超, 姚志浩, 郭婧, 彭子超, 江河, 董建新. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律[J]. 金属学报, 2021, 57(12): 1549-1558.
[11] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[12] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[13] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[14] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[15] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.