Please wait a minute...
金属学报  2019, Vol. 55 Issue (11): 1477-1486    DOI: 10.11900/0412.1961.2019.00025
  研究论文 本期目录 | 过刊浏览 |
1. 西南交通大学力学与工程学院应用力学与结构安全四川省重点实验室 成都 610031
2. 西安交通大学机械结构强度与振动国家重点实验室 西安 710049
A Three-Dimensional Discrete Dislocation Dynamics Simulation on Micropillar Compression of Single Crystal Copper with Dislocation Density Gradient
XIONG Jian1,WEI Dean1,LU Songjiang1,KAN Qianhua1,KANG Guozheng1,ZHANG Xu1,2()
1. Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(7681 KB)   HTML


关键词 微柱压缩离散位错动力学位错密度梯度塑性变形加载方向    

In recent years, many gradient materials have been studied. The metal materials with gradient microstructure mainly include: grain size distribution gradient, twin density gradient, dislocation density gradient, solute or precipitate density gradient, or combinations thereof. There are many studies of gradient nanograined material, but few studies of the dislocation density gradient. In fact, the dislocation density gradient structure is ubiquitous. The Taylor relation is only applicable to reveal the relationship between dislocation density and plastic flow stress, without the description of its dependence on dislocation density gradient. Discrete dislocation dynamics (DDD) has its advantage in describing plastic deformation in terms of dislocation motion and dislocation interactions. In this work, Three-dimensional discrete dislocation dynamics (3D-DDD) simulation was performed to investigate the compression behavior of single crystal copper micropillar with dislocation density gradient structure. The effects of loading direction perpendicular and parallel to the direction of dislocation density gradient on the anisotropic responses of micropillar compression were analyzed. The compressional stress-strain response shows that, when the loading direction is parallel to the gradient direction, the critical stress of elastic-plastic transition is higher. However, the plastic flow stress is not affected by the loading direction when the strain is relative larger. Further analysis of spatial-temporal evolution of plastic strain and dislocation density indicate that: when the loading direction is perpendicular to the dislocation density gradient direction, the dislocation sources are firstly activated in the region with the lowest dislocation density, then the dislocations in the region with higher dislocation density are activated subsequently; and the whole deformation process is accompanied with multiple slip bands, then the deformation of the whole model is relatively more uniform. When the loading direction is parallel to the dislocation density gradient direction, the dislocation sources start to activate in the middle layer of the model, then expand to the two adjacent ends; and the plastic deformation of the whole model mainly concentrates in only one slip band.

Key wordsmicropillar compression    discrete dislocation dynamics    dislocation density gradient    plastic deformation    loading direction
收稿日期: 2019-01-28     
ZTFLH:  TG146.1  
通讯作者: 张旭     E-mail:
Corresponding author: Xu ZHANG     E-mail:
作者简介: 熊健,男,1994年生,硕士生


熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
Jian XIONG, Dean WEI, Songjiang LU, Qianhua KAN, Guozheng KANG, Xu ZHANG. A Three-Dimensional Discrete Dislocation Dynamics Simulation on Micropillar Compression of Single Crystal Copper with Dislocation Density Gradient. Acta Metall Sin, 2019, 55(11): 1477-1486.

链接本文:      或

图1  离散位错动力学模拟中位错的离散化处理


Number of source

Dislocation density

1012 m-2

Dislocation spacing


Bottom layer10038.0162
Middle layer20076.5114
Top layer300114.093
表1  模型各层的位错源数量、初始位错密度与位错间距
Burgers vector (b)0.256nm
Mean dislocation density (ρ)76.51012 m-2
Mean dislocation source length (lFRS)400nm
Poisson's ratio (ν)0.324-
Shear modulus (μ)54.6GPa
Drag coefficient (B)1×10-4Pa·s
表2  Cu单晶微柱离散位错动力学模拟的材料参数
图2  位错密度梯度结构模型在不同加载方向下的初始位错构型
图3  位错密度梯度结构Cu单晶微柱在不同加载方向下的等效应力-应变曲线以及位错密度演化曲线
Slip systemX direction [11ˉ0]Z direction [1ˉ1ˉ2]
表3  不同加载方向下Cu单晶微柱各个滑移系的Schmid因子
图4  不同加载方向下的主滑移系
图5  位错密度梯度结构模型沿X轴加载时不同应变时的位错微结构
图6  位错密度梯度结构模型沿着X轴方向加载时在不同应变时表面的塑性应变分布
图7  位错密度梯度结构模型沿X轴加载时,位错密度不同的各层塑性应变及位错密度随应变的变化
图8  位错密度梯度结构模型沿Z轴加载时不同应变时的位错微结构
图9  位错密度梯度结构模型沿着Z轴方向加载时在不同应变时表面的塑性应变分布
图10  位错密度梯度结构模型沿Z轴加载时,位错密度不同的各层塑性应变及位错密度随应变的变化
[1] LiuZ Q, MeyersM A, ZhangZ F, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications [J]. Prog. Mater. Sci., 2017, 88: 467
[2] LiY. Research progress on gradient metallic materials [J]. Mater. China, 2016, 35: 658
[2] 李 毅. 梯度结构金属材料研究进展 [J]. 中国材料进展, 2016, 35: 658
[3] LuK. Gradient nanostructured materials [J]. Acta Metall. Sin., 2015, 51: 1
[3] 卢 柯. 梯度纳米结构材料 [J]. 金属学报, 2015, 51: 1
[4] LuK. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
[5] WuX L, JiangP, ChenL, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
[6] ZhaoJ F, KanQ H, ZhouL C, et al. Deformation mechanisms based constitutive modelling and strength-ductility mapping of gradient nano-grained materials [J]. Mater. Sci. Eng., 2019, A742: 400
[7] LuX C, ZhangX, ShiM X, et al. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper [J]. Int. J. Plast., 2019, 113: 52
[8] ChengZ, ZhouH F, LuQ H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
[9] ZhouH F, QuS X. Investigation of atomistic deformation mechanism of gradient nanotwinned copper using molecular dynamics simulation method [J]. Acta Metall. Sin., 2014, 50: 226
[9] 周昊飞, 曲绍兴. 利用分子动力学研究梯度纳米孪晶Cu的微观变形机理 [J]. 金属学报, 2014, 50: 226
[10] SakaiT, OhashiM, ChibaK, et al. Recovery and recrystallization of polycrystalline nickel after hot working [J]. Acta Metall., 1988, 36: 1781
[11] SakaiT, OhashiM. Dislocation substructures developed during dynamic recrystallisation in polycrystalline nickel [J]. Mater. Sci. Technol., 1990, 6: 1251
[12] HeD, HuanY, LiQ. Effect of dislocation density gradient on deformation behavior of pure nickel subjected to torsion [A]. DEStech Transactions on Materials Science and Engineering [C]. Nanjing: DEStech Publications, 2017
[13] ArsenlisA, CaiW, TangM, et al. Enabling strain hardening simulations with dislocation dynamics [J]. Model. Simul. Mater. Sci. Eng., 2007, 15: 553
[14] TangH, SchwarzK W, EspinosaH D. Dislocation escape-related size effects in single-crystal micropillars under uniaxial compression [J]. Acta Mater., 2007, 55: 1607
[15] SengerJ, WeygandD, GumbschP, et al. Discrete dislocation simulations of the plasticity of micro-pillars under uniaxial loading [J]. Scr. Mater., 2008, 58: 587
[16] MotzC, WeygandD, SengerJ, et al. Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity [J]. Acta Mater., 2009, 57: 1744
[17] LuS J, ZhangB, LiX Y, et al. Grain boundary effect on nanoindentation: A multiscale discrete dislocation dynamics model [J]. J. Mech. Phys. Solids, 2019, 126: 117
[18] WeiD A, FanH D, TangJ, et al. Effect of a vertical twin boundary on the mechanical property of bicrystalline copper micropillars [A]. TMS 148th Annual Meeting & Exhibition Supplemental Proceedings [C]. Cham: Springer, 2019: 1305
[19] WeinbergerC R, CaiW. Surface-controlled dislocation multiplication in metal micropillars [J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 14304
[20] SengerJ, WeygandD, MotzC, et al. Aspect ratio and stochastic effects in the plasticity of uniformly loaded micrometer-sized specimens [J]. Acta Mater., 2011, 59: 2937
[21] El-awadyJ A. Unravelling the physics of size-dependent dislocation-mediated plasticity [J]. Nat. Commun., 2015, 6: 5926
[22] LiZ H, HouC T, HuangM S, et al. Strengthening mechanism in micro-polycrystals with penetrable grain boundaries by discrete dislocation dynamics simulation and Hall-Petch effect [J]. Comput. Mater. Sci., 2009, 46: 1124
[23] HuangM S, LiangS, LiZ H. An extended 3D discrete-continuous model and its application on single- and bi-crystal micropillars [J]. Model. Simul. Mater. Sci. Eng., 2017, 25: 035001
[24] HuangM S, LiZ H. Coupled DDD-FEM modeling on the mechanical behavior of microlayered metallic multilayer film at elevated temperature [J]. J. Mech. Phys. Solids, 2015, 85: 74
[25] HuangS, HuangM S, LiZ H. Effect of interfacial dislocation networks on the evolution of matrix dislocations in nickel-based superalloy [J]. Int. J. Plast., 2018, 110: 1
[26] LiuZ L, LiuX M, ZhuangZ, et al. A multi-scale computational model of crystal plasticity at submicron-to-nanometer scales [J]. Int. J. Plast., 2009, 25: 1436
[27] CuiY N, LiuZ L, ZhuangZ. Quantitative investigations on dislocation based discrete-continuous model of crystal plasticity at submicron scale [J]. Int. J. Plast., 2015, 69: 54
[28] FanH D, AubryS, ArsenlisA, et al. Discrete dislocation dynamics simulations of twin size-effects in magnesium [A]. MRS Online Proceedings Library [C]. Cambridge: Cambridge University Press, 2015: 1741
[29] GuoX R, SunC Y, WangC H, et al. Investigation of strain rate effect by three-dimensional discrete dislocation dynamics for fcc single crystal during compression process [J]. Acta Metall. Sin., 2018, 54: 1322
[29] 郭祥如, 孙朝阳, 王春晖等. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究 [J]. 金属学报, 2018, 54: 1322
30 BulatovV, CaiW, FierJ, et al. Scalable line dynamics in ParaDiS [A]. Proceedings of 2004 ACM/IEEE Conference on Supercomputing [C]. Pittsburgh: IEEE, 2004
[31] WeygandD, FriedmanL H, Van der GiessenE, et al. Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics [J]. Model. Simul. Mater. Sci. Eng., 2002, 10: 437
[32] VattréA, DevincreB, FeyelF, et al. Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: The discrete-continuous model revisited [J]. J. Mech. Phys. Solids, 2014, 63: 491
[33] SengerJ, WeygD, MotzC. Aspect ratio and stochastic effects in the plasticity of uniformly loaded micrometer-sized specimens [J]. Acta Mater., 2011, 59: 2937
[34] ZhangX, AifantisK E, SengerJ, et al. Internal length scale and grain boundary yield strength in gradient models of polycrystal plasticity: How do they relate to the dislocation microstructure? [J]. J. Mater. Res., 2014, 29: 2116
[35] WuZ J, ZhaoE J, XiangH P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Phys. Rev., 2007, 76B: 054115
[1] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[2] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[3] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[4] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[5] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[6] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[7] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[8] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[9] 孙军, 李苏植, 丁向东, 李巨. 氢化空位的基本性质及其对金属力学行为的影响[J]. 金属学报, 2018, 54(11): 1683-1692.
[10] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[11] 张金睿, 张晏玮, 郝玉琳, 李述军, 杨锐. 生物医用Ti-24Nb-4Zr-8Sn单晶合金塑性变形行为研究[J]. 金属学报, 2017, 53(10): 1385-1392.
[12] 孙军, 张金钰, 吴凯, 刘刚. Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*[J]. 金属学报, 2016, 52(10): 1249-1258.
[13] 邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
[14] 周立初,胡显军,马驰,周雪峰,蒋建清,方峰. 珠光体层片取向对冷拔珠光体钢丝形变的影响*[J]. 金属学报, 2015, 51(8): 897-903.
[15] 王晓钢,姜潮,韩旭. Ni单晶体塑性应变的非均匀性与加工硬化*[J]. 金属学报, 2015, 51(12): 1457-1464.