|
|
位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟 |
熊健1,魏德安1,陆宋江1,阚前华1,康国政1,张旭1,2( ) |
1. 西南交通大学力学与工程学院应用力学与结构安全四川省重点实验室 成都 610031 2. 西安交通大学机械结构强度与振动国家重点实验室 西安 710049 |
|
A Three-Dimensional Discrete Dislocation Dynamics Simulation on Micropillar Compression of Single Crystal Copper with Dislocation Density Gradient |
XIONG Jian1,WEI Dean1,LU Songjiang1,KAN Qianhua1,KANG Guozheng1,ZHANG Xu1,2( ) |
1. Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China 2. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China |
引用本文:
熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
Jian XIONG,
Dean WEI,
Songjiang LU,
Qianhua KAN,
Guozheng KANG,
Xu ZHANG.
A Three-Dimensional Discrete Dislocation Dynamics Simulation on Micropillar Compression of Single Crystal Copper with Dislocation Density Gradient[J]. Acta Metall Sin, 2019, 55(11): 1477-1486.
[1] | LiuZ Q, MeyersM A, ZhangZ F, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications [J]. Prog. Mater. Sci., 2017, 88: 467 | [2] | LiY. Research progress on gradient metallic materials [J]. Mater. China, 2016, 35: 658 | [2] | 李 毅. 梯度结构金属材料研究进展 [J]. 中国材料进展, 2016, 35: 658 | [3] | LuK. Gradient nanostructured materials [J]. Acta Metall. Sin., 2015, 51: 1 | [3] | 卢 柯. 梯度纳米结构材料 [J]. 金属学报, 2015, 51: 1 | [4] | LuK. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455 | [5] | WuX L, JiangP, ChenL, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197 | [6] | ZhaoJ F, KanQ H, ZhouL C, et al. Deformation mechanisms based constitutive modelling and strength-ductility mapping of gradient nano-grained materials [J]. Mater. Sci. Eng., 2019, A742: 400 | [7] | LuX C, ZhangX, ShiM X, et al. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper [J]. Int. J. Plast., 2019, 113: 52 | [8] | ChengZ, ZhouH F, LuQ H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925 | [9] | ZhouH F, QuS X. Investigation of atomistic deformation mechanism of gradient nanotwinned copper using molecular dynamics simulation method [J]. Acta Metall. Sin., 2014, 50: 226 | [9] | 周昊飞, 曲绍兴. 利用分子动力学研究梯度纳米孪晶Cu的微观变形机理 [J]. 金属学报, 2014, 50: 226 | [10] | SakaiT, OhashiM, ChibaK, et al. Recovery and recrystallization of polycrystalline nickel after hot working [J]. Acta Metall., 1988, 36: 1781 | [11] | SakaiT, OhashiM. Dislocation substructures developed during dynamic recrystallisation in polycrystalline nickel [J]. Mater. Sci. Technol., 1990, 6: 1251 | [12] | HeD, HuanY, LiQ. Effect of dislocation density gradient on deformation behavior of pure nickel subjected to torsion [A]. DEStech Transactions on Materials Science and Engineering [C]. Nanjing: DEStech Publications, 2017 | [13] | ArsenlisA, CaiW, TangM, et al. Enabling strain hardening simulations with dislocation dynamics [J]. Model. Simul. Mater. Sci. Eng., 2007, 15: 553 | [14] | TangH, SchwarzK W, EspinosaH D. Dislocation escape-related size effects in single-crystal micropillars under uniaxial compression [J]. Acta Mater., 2007, 55: 1607 | [15] | SengerJ, WeygandD, GumbschP, et al. Discrete dislocation simulations of the plasticity of micro-pillars under uniaxial loading [J]. Scr. Mater., 2008, 58: 587 | [16] | MotzC, WeygandD, SengerJ, et al. Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity [J]. Acta Mater., 2009, 57: 1744 | [17] | LuS J, ZhangB, LiX Y, et al. Grain boundary effect on nanoindentation: A multiscale discrete dislocation dynamics model [J]. J. Mech. Phys. Solids, 2019, 126: 117 | [18] | WeiD A, FanH D, TangJ, et al. Effect of a vertical twin boundary on the mechanical property of bicrystalline copper micropillars [A]. TMS 148th Annual Meeting & Exhibition Supplemental Proceedings [C]. Cham: Springer, 2019: 1305 | [19] | WeinbergerC R, CaiW. Surface-controlled dislocation multiplication in metal micropillars [J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 14304 | [20] | SengerJ, WeygandD, MotzC, et al. Aspect ratio and stochastic effects in the plasticity of uniformly loaded micrometer-sized specimens [J]. Acta Mater., 2011, 59: 2937 | [21] | El-awadyJ A. Unravelling the physics of size-dependent dislocation-mediated plasticity [J]. Nat. Commun., 2015, 6: 5926 | [22] | LiZ H, HouC T, HuangM S, et al. Strengthening mechanism in micro-polycrystals with penetrable grain boundaries by discrete dislocation dynamics simulation and Hall-Petch effect [J]. Comput. Mater. Sci., 2009, 46: 1124 | [23] | HuangM S, LiangS, LiZ H. An extended 3D discrete-continuous model and its application on single- and bi-crystal micropillars [J]. Model. Simul. Mater. Sci. Eng., 2017, 25: 035001 | [24] | HuangM S, LiZ H. Coupled DDD-FEM modeling on the mechanical behavior of microlayered metallic multilayer film at elevated temperature [J]. J. Mech. Phys. Solids, 2015, 85: 74 | [25] | HuangS, HuangM S, LiZ H. Effect of interfacial dislocation networks on the evolution of matrix dislocations in nickel-based superalloy [J]. Int. J. Plast., 2018, 110: 1 | [26] | LiuZ L, LiuX M, ZhuangZ, et al. A multi-scale computational model of crystal plasticity at submicron-to-nanometer scales [J]. Int. J. Plast., 2009, 25: 1436 | [27] | CuiY N, LiuZ L, ZhuangZ. Quantitative investigations on dislocation based discrete-continuous model of crystal plasticity at submicron scale [J]. Int. J. Plast., 2015, 69: 54 | [28] | FanH D, AubryS, ArsenlisA, et al. Discrete dislocation dynamics simulations of twin size-effects in magnesium [A]. MRS Online Proceedings Library [C]. Cambridge: Cambridge University Press, 2015: 1741 | [29] | GuoX R, SunC Y, WangC H, et al. Investigation of strain rate effect by three-dimensional discrete dislocation dynamics for fcc single crystal during compression process [J]. Acta Metall. Sin., 2018, 54: 1322 | [29] | 郭祥如, 孙朝阳, 王春晖等. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究 [J]. 金属学报, 2018, 54: 1322 | 30 | BulatovV, CaiW, FierJ, et al. Scalable line dynamics in ParaDiS [A]. Proceedings of 2004 ACM/IEEE Conference on Supercomputing [C]. Pittsburgh: IEEE, 2004 | [31] | WeygandD, FriedmanL H, Van der GiessenE, et al. Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics [J]. Model. Simul. Mater. Sci. Eng., 2002, 10: 437 | [32] | VattréA, DevincreB, FeyelF, et al. Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: The discrete-continuous model revisited [J]. J. Mech. Phys. Solids, 2014, 63: 491 | [33] | SengerJ, WeygD, MotzC. Aspect ratio and stochastic effects in the plasticity of uniformly loaded micrometer-sized specimens [J]. Acta Mater., 2011, 59: 2937 | [34] | ZhangX, AifantisK E, SengerJ, et al. Internal length scale and grain boundary yield strength in gradient models of polycrystal plasticity: How do they relate to the dislocation microstructure? [J]. J. Mater. Res., 2014, 29: 2116 | [35] | WuZ J, ZhaoE J, XiangH P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Phys. Rev., 2007, 76B: 054115 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|