Please wait a minute...
金属学报    DOI: 10.3724/SP.J.1037.2013.00329
  论文 本期目录 | 过刊浏览 |
7050铝合金半固态压缩变形行为及组织演变
刘允中,李志龙,顾才鑫
华南理工大学国家金属材料近净成形工程技术中心, 广州 510640
DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION OF 7050 ALUMINUM ALLOY DURING SEMI—SOLID STATE COMPRESSION PROCESS
LIU Yunzhong, LI Zhilong, GU Caixin
National Engineering Research Center of Near—Net—Shape Forming for Metallic Materials, South China University of  Technology, Guangzhou 510640
 
全文: PDF(5423 KB)  
摘要: 

采用应变诱导熔化激活法(SIMA法)制备了半固态7050 铝合金坯料, 研究了等温过程中晶粒的粗化规律.利用Gleeble—3500热模拟试验机分别对半固态7050铝合金和常规铸造7050铝合金进行了压缩实验,分析了其应力—应变关系, 研究了半固态7050铝合金压缩变形时液固相协同变化规律,并对半固态7050铝合金和常规铸造7050铝合金的压缩裂纹扩展过程进行了研究.结果表明, 常规铸造的7050铝合金的压缩应力明显偏高.变形量、变形温度和应变速率对显微组织变化和液相分布有明显影响. 此外,由于半固态合金和铸造合金在显微组织上的显著差别,导致其裂纹的扩展过程也不一样, 即分别对应着固—液分离过程和固—液、固—固混合分离过程.

关键词 铝合金半固态显微组织压缩固液分离    
Abstract

The compression characters of the semi—solid slurries are the key to semi—solid processing such as semi—solid rolling which has high strain rates during the deformation. The deformation mechanism of semi—solid alloy can be understood well only after the relationship between stress and strain is obtained. Among many relevant research works done up to now, very few studies focus on the 7050 aluminum alloy. In order to study the sensibility of 7050 aluminum alloy to the strain rates, temperatures and reductions, the deformation behavior and microstructure evolution of 7050 aluminum alloy under different compression parameters were studied in this work. The grain coarsening of 7050 aluminum alloy prepared by the strain induced melt activation (SIMA) method during the isothermal heating process was studied firstly. Then the compression tests, within the semi—solid temperature range, on conventional cast alloy and semi—solid alloy were carried out respectively by using a Gleeble—3500 material thermo—simulation machine with the strain rates from 0.1 s-1 to 10 s-1.The relationship between stress and strain was analyzed subsequently. The synergistic effect between liquid and solid was analyzed in—depth as well. In addition, the differences of cracks propagation between conventional cast alloy and semi—solid state alloy during compression were discussed. Experimental results show that the stress of conventional cast alloy has a higher level than that of semi—solid alloy, which is 12 MPa higher at the peak position and 9 MPa higher during the stabilization stage. Reductions, deformation temperatures and strain rates during compression have remarkable effects on the microstructure evolution and the liquid phase distribution. The high reduction leads to the sharp deformation of the grain shape. The deformation has an obvious transition region in the middle which can be clearly seen that elongated grains have a deflection toward the edge. The lower the temperature, the smaller the liquid fraction is. This leads to recrystallization during the compression. The strain rates contribute to the flowing and distribution of liquid phase. The liquid phase transfers hardly when consisting with the solid phase under the high strain rate (10 s-1), which results in a uniform deformation in different regions. Because of the remarkable differences in microstructures between conventional cast alloy and semi—solid alloy, the evolution of cracks propagation is also different, which corresponds to a solid—liquid separation mechanism and a mixed separation mechanism respectively. Semi—solid alloy has spherical crystals that can slide easily when comparing with conventional cast alloy with dendritic crystals. This makes a further explanation for the lower stress of the semi—solid alloy.

Key wordssemi—solid aluminum alloy    microstructure    compression    separation between solid and liquid
收稿日期: 2013-06-14     
基金资助:

中央高校基本科研业务费重点资助项目2011ZZ0010

通讯作者: 刘允中     E-mail: yzhliu@scut.edu.cn
作者简介: 刘允中, 男, 1969年生, 教授, 博士

引用本文:

刘允中,李志龙,顾才鑫. 7050铝合金半固态压缩变形行为及组织演变[J]. 金属学报, 10.3724/SP.J.1037.2013.00329.
LIU Yunzhong, LI Zhilong, GU Caixin. DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION OF 7050 ALUMINUM ALLOY DURING SEMI—SOLID STATE COMPRESSION PROCESS. Acta Metall Sin, 2013, 49(12): 1597-1603.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00329      或      https://www.ams.org.cn/CN/Y2013/V49/I12/1597

[1] Spencer D B.  PhD Dissertation, University of Cambridge, Britain, 1971

[2] Spencer D B, Mehrabian R, Flemings M C.  Metall Trans, 1972; 3: 1925
[3] Kirkwood D H.  Int Mater Rev, 1994; 39: 173
[4] Manson—Whitton E D, Stone I C, Jones J R, Grant P S, Cantor B.  Acta Mater, 2002; 50: 2517
[5] Lifshitz I M, Slyozov V V.  J Phys Chem Solids, 1961; 19: 35
[6] Kang C G, Choi J S, Kim K H.  J Mater Process Technol, 1999; 88: 159
[7] Chen C P, Tstoc Y A.  Acta Mater, 1997; 45: 1955
[8] Song R B, Kang Y L, Zhao A M.  J Mater Process Technol, 2008; 198: 291
[9] Ji Z S, Li Q F, Liu Z J, Zheng X P, Lu W.  Chin J Nonferrous Met, 2003; 13: 1156
(吉泽升, 李庆芬, 刘兆晶, 郑小平, 路维. 中国有色金属学报, 2003; 13: 1156)
[10] Zhai Q Y, Yuan S, Jiang B L.  Chin J Nonferrous Met, 2005; 15: 123
(翟秋亚, 袁森, 蒋百灵. 中国有色金属学报, 2005; 15: 123)
[11] Yao L Y, Yuan S, Wang W X, Jiang B L, Tang W T.   Chin J Nonferrous Met, 2004; 14: 660
(姚亮宇, 袁森, 王武孝, 蒋百灵, 唐文亭. 中国有色金属学报, 2004; 14: 660)
[12] Li X W, Xiong B Q, Zhang Y A, Hua C, Wang F, Zhu B H, Xiong Y M.   Chin J Rare Met, 2008; 32: 552
(李锡武, 熊柏青, 张永安, 华成, 王锋, 朱宝宏, 熊益民. 稀有金属, 2008; 32: 552)
[13] Qi Y H, Yang G Y, Zhang L L, Jie W Q.  Rare Met Mater Eng, 2011; 40: 413
(齐元昊, 杨光昱, 张丽丽, 介万奇. 稀有金属材料与工程, 2011; 40: 413)
[14] Zhang L, Cao Z Y, Liu Y B.  Trans Nonferrous Met Soc China, 2010; 20: 1244
[15] Atkinson H V, Liu D.  Mater Sci Eng, 2008; A496: 439
[16] Shabestari S G, Shahri F.  J Mater Sci, 2004; 39: 2023
[17] Shi L, Yan J C, Pang B, Han Y F.  Mater Sci Eng, 2011; A528: 7084
[18] Chayong S, Atkinson H V, Kapranos P.  Mater Sci Eng, 2005; A390: 3
[19] Yang H L, Zhang Z L, Ohnakab I.  J Mater Process Technol, 2004; 151: 155
[20] Lin G Y, Zhang Z F, Zhang H, Peng D S, Zhou J.  Acta Metall Sin (Eng Lett), 2008; 21: 109
[21] Luo S J, Sun J K.  Chin Sci Bull, 1999; 44: 545
(罗守靖, 孙家宽. 科学通报, 1999; 44: 545)
[22] Atkinson H V, Burke K, Vaneetveld G.  Mater Sci Eng, 2008; A490: 266
[23] Yang X F, Kang Y L, Song R B, Mao W M, Yang M S.  Chin J Nonferrous Met, 2000; 10(Suppl 1): 120
(杨雄飞, 康永林, 宋仁伯, 毛卫民, 杨卯生. 中国有色金属学报, 2000; 10(增刊1): 120)
[24] Mao W M, Yin A M, Zhong X Y.  Acta Metall Sin, 2005; 41: 539
(毛卫民, 殷爱美, 钟雪友. 金属学报, 2005; 41: 539)
[25] Kang C G, Choi J S, Kim K H.  J Mater Process Technol, 1999; 88: 159
[26] Yan H, Zhou B F.  Mater Sci Eng, 2006; B132: 179
[27] Guo J, Ding Z Y, Xie S S, Huang S H.  Chin J Nonferrous Met, 2000; 10(Suppl 1): 1155
(郭钧, 丁志勇, 谢水生, 黄声宏. 中国有色金属学报, 2000; 10(增刊1): 1155)
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[4] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[5] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[6] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[7] 周丽,张鹏飞,王全兆,肖伯律,马宗义,于涛. B4C/6061Al复合材料热压缩断裂行为的多尺度研究[J]. 金属学报, 2019, 55(7): 911-918.
[8] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[9] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[10] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[11] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[12] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[13] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[14] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[15] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.