Please wait a minute...
金属学报  2013, Vol. 49 Issue (12): 1597-1603    DOI: 10.3724/SP.J.1037.2013.00329
  论文 本期目录 | 过刊浏览 |
7050铝合金半固态压缩变形行为及组织演变
刘允中,李志龙,顾才鑫
华南理工大学国家金属材料近净成形工程技术中心, 广州 510640
DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION OF 7050 ALUMINUM ALLOY DURING SEMI—SOLID STATE COMPRESSION PROCESS
LIU Yunzhong, LI Zhilong, GU Caixin
National Engineering Research Center of Near—Net—Shape Forming for Metallic Materials, South China University of  Technology, Guangzhou 510640
 
引用本文:

刘允中,李志龙,顾才鑫. 7050铝合金半固态压缩变形行为及组织演变[J]. 金属学报, 2013, 49(12): 1597-1603.
LIU Yunzhong, LI Zhilong, GU Caixin. DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION OF 7050 ALUMINUM ALLOY DURING SEMI—SOLID STATE COMPRESSION PROCESS[J]. Acta Metall Sin, 2013, 49(12): 1597-1603.

全文: PDF(5423 KB)  
摘要: 

采用应变诱导熔化激活法(SIMA法)制备了半固态7050 铝合金坯料, 研究了等温过程中晶粒的粗化规律.利用Gleeble—3500热模拟试验机分别对半固态7050铝合金和常规铸造7050铝合金进行了压缩实验,分析了其应力—应变关系, 研究了半固态7050铝合金压缩变形时液固相协同变化规律,并对半固态7050铝合金和常规铸造7050铝合金的压缩裂纹扩展过程进行了研究.结果表明, 常规铸造的7050铝合金的压缩应力明显偏高.变形量、变形温度和应变速率对显微组织变化和液相分布有明显影响. 此外,由于半固态合金和铸造合金在显微组织上的显著差别,导致其裂纹的扩展过程也不一样, 即分别对应着固—液分离过程和固—液、固—固混合分离过程.

关键词 铝合金半固态显微组织压缩固液分离    
Abstract

The compression characters of the semi—solid slurries are the key to semi—solid processing such as semi—solid rolling which has high strain rates during the deformation. The deformation mechanism of semi—solid alloy can be understood well only after the relationship between stress and strain is obtained. Among many relevant research works done up to now, very few studies focus on the 7050 aluminum alloy. In order to study the sensibility of 7050 aluminum alloy to the strain rates, temperatures and reductions, the deformation behavior and microstructure evolution of 7050 aluminum alloy under different compression parameters were studied in this work. The grain coarsening of 7050 aluminum alloy prepared by the strain induced melt activation (SIMA) method during the isothermal heating process was studied firstly. Then the compression tests, within the semi—solid temperature range, on conventional cast alloy and semi—solid alloy were carried out respectively by using a Gleeble—3500 material thermo—simulation machine with the strain rates from 0.1 s-1 to 10 s-1.The relationship between stress and strain was analyzed subsequently. The synergistic effect between liquid and solid was analyzed in—depth as well. In addition, the differences of cracks propagation between conventional cast alloy and semi—solid state alloy during compression were discussed. Experimental results show that the stress of conventional cast alloy has a higher level than that of semi—solid alloy, which is 12 MPa higher at the peak position and 9 MPa higher during the stabilization stage. Reductions, deformation temperatures and strain rates during compression have remarkable effects on the microstructure evolution and the liquid phase distribution. The high reduction leads to the sharp deformation of the grain shape. The deformation has an obvious transition region in the middle which can be clearly seen that elongated grains have a deflection toward the edge. The lower the temperature, the smaller the liquid fraction is. This leads to recrystallization during the compression. The strain rates contribute to the flowing and distribution of liquid phase. The liquid phase transfers hardly when consisting with the solid phase under the high strain rate (10 s-1), which results in a uniform deformation in different regions. Because of the remarkable differences in microstructures between conventional cast alloy and semi—solid alloy, the evolution of cracks propagation is also different, which corresponds to a solid—liquid separation mechanism and a mixed separation mechanism respectively. Semi—solid alloy has spherical crystals that can slide easily when comparing with conventional cast alloy with dendritic crystals. This makes a further explanation for the lower stress of the semi—solid alloy.

Key wordssemi—solid aluminum alloy    microstructure    compression    separation between solid and liquid
收稿日期: 2013-06-14     
基金资助:

中央高校基本科研业务费重点资助项目2011ZZ0010

作者简介: 刘允中, 男, 1969年生, 教授, 博士

[1] Spencer D B.  PhD Dissertation, University of Cambridge, Britain, 1971

[2] Spencer D B, Mehrabian R, Flemings M C.  Metall Trans, 1972; 3: 1925
[3] Kirkwood D H.  Int Mater Rev, 1994; 39: 173
[4] Manson—Whitton E D, Stone I C, Jones J R, Grant P S, Cantor B.  Acta Mater, 2002; 50: 2517
[5] Lifshitz I M, Slyozov V V.  J Phys Chem Solids, 1961; 19: 35
[6] Kang C G, Choi J S, Kim K H.  J Mater Process Technol, 1999; 88: 159
[7] Chen C P, Tstoc Y A.  Acta Mater, 1997; 45: 1955
[8] Song R B, Kang Y L, Zhao A M.  J Mater Process Technol, 2008; 198: 291
[9] Ji Z S, Li Q F, Liu Z J, Zheng X P, Lu W.  Chin J Nonferrous Met, 2003; 13: 1156
(吉泽升, 李庆芬, 刘兆晶, 郑小平, 路维. 中国有色金属学报, 2003; 13: 1156)
[10] Zhai Q Y, Yuan S, Jiang B L.  Chin J Nonferrous Met, 2005; 15: 123
(翟秋亚, 袁森, 蒋百灵. 中国有色金属学报, 2005; 15: 123)
[11] Yao L Y, Yuan S, Wang W X, Jiang B L, Tang W T.   Chin J Nonferrous Met, 2004; 14: 660
(姚亮宇, 袁森, 王武孝, 蒋百灵, 唐文亭. 中国有色金属学报, 2004; 14: 660)
[12] Li X W, Xiong B Q, Zhang Y A, Hua C, Wang F, Zhu B H, Xiong Y M.   Chin J Rare Met, 2008; 32: 552
(李锡武, 熊柏青, 张永安, 华成, 王锋, 朱宝宏, 熊益民. 稀有金属, 2008; 32: 552)
[13] Qi Y H, Yang G Y, Zhang L L, Jie W Q.  Rare Met Mater Eng, 2011; 40: 413
(齐元昊, 杨光昱, 张丽丽, 介万奇. 稀有金属材料与工程, 2011; 40: 413)
[14] Zhang L, Cao Z Y, Liu Y B.  Trans Nonferrous Met Soc China, 2010; 20: 1244
[15] Atkinson H V, Liu D.  Mater Sci Eng, 2008; A496: 439
[16] Shabestari S G, Shahri F.  J Mater Sci, 2004; 39: 2023
[17] Shi L, Yan J C, Pang B, Han Y F.  Mater Sci Eng, 2011; A528: 7084
[18] Chayong S, Atkinson H V, Kapranos P.  Mater Sci Eng, 2005; A390: 3
[19] Yang H L, Zhang Z L, Ohnakab I.  J Mater Process Technol, 2004; 151: 155
[20] Lin G Y, Zhang Z F, Zhang H, Peng D S, Zhou J.  Acta Metall Sin (Eng Lett), 2008; 21: 109
[21] Luo S J, Sun J K.  Chin Sci Bull, 1999; 44: 545
(罗守靖, 孙家宽. 科学通报, 1999; 44: 545)
[22] Atkinson H V, Burke K, Vaneetveld G.  Mater Sci Eng, 2008; A490: 266
[23] Yang X F, Kang Y L, Song R B, Mao W M, Yang M S.  Chin J Nonferrous Met, 2000; 10(Suppl 1): 120
(杨雄飞, 康永林, 宋仁伯, 毛卫民, 杨卯生. 中国有色金属学报, 2000; 10(增刊1): 120)
[24] Mao W M, Yin A M, Zhong X Y.  Acta Metall Sin, 2005; 41: 539
(毛卫民, 殷爱美, 钟雪友. 金属学报, 2005; 41: 539)
[25] Kang C G, Choi J S, Kim K H.  J Mater Process Technol, 1999; 88: 159
[26] Yan H, Zhou B F.  Mater Sci Eng, 2006; B132: 179
[27] Guo J, Ding Z Y, Xie S S, Huang S H.  Chin J Nonferrous Met, 2000; 10(Suppl 1): 1155
(郭钧, 丁志勇, 谢水生, 黄声宏. 中国有色金属学报, 2000; 10(增刊1): 1155)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[12] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[15] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.