Please wait a minute...
金属学报    DOI: 10.3724/SP.J.1037.2013.00540
  论文 本期目录 | 过刊浏览 |
Al3CrCuFeNi2高熵合金单晶材料的制备及性能
张素芳,杨潇,张勇
北京科技大学新金属材料国家重点实验室, 北京 100083
PROCESSING AND PROPERTIES OF Al3CrCuFeNi2 SINGLE CRYSTAL HIGH--ENTROPY ALLOY
ZHANG Sufang, YANG Xiao, ZHANG Yong
State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing, Beijing 100083
全文: PDF(5837 KB)  
摘要: 

采用Bridgman技术研究在10, 30和150 μm/s抽拉速率下的一次定向凝固和10 μm/s抽拉速率下的二次定向凝固方法制备出的Al3CrCuFeNi2高熵合金,并对相应的金相显微组织进行分析; 采用EBSD技术对10 μm/s一次和二次定向凝固样品生长过程中的取向变化及晶界取向差角进行分析;对10 μm/s二次定向凝固样品和吸铸样品的室温拉伸力学性能进行研究. 结果表明,对比吸铸, 10, 30 和 150 μm/s定向凝固样品的组织形貌,10 μm/s定向凝固制备的样品枝晶一次间距最大, 枝晶干生长方向角度差最小;10 μm/s二次定向凝固的晶粒取向更接近<001>方向,且多数晶界取向差小于5°; 10 μm/s 二次定向凝固Al3CrCuFeNi2高熵合金样品比吸铸样品的屈服强度提高34.6%, 抗拉强度提高10.2%, 延伸率提高40%.

关键词 Al3CrCuFeNi2高熵合金EBSD取向分析力学性能    
Abstract

The high-entropy alloy is a class of new metal material,its dominant element is generally more than three, and its mixing entropy is high and easy to form a solid solution structure. A large number of investigations show that high-entropy alloy possess excellent high temperature phase stability and softening resistance, which is superior to traditional superalloy. The Al3CrCuFeNi2 high-entropy alloy is studied by using once Bridgman solidification at different draw rates (10, 30 and 150 μm/s) and twice Bridgman solidification at 10 μm/s draw rate, the corresponding microstructure are analyzed. The EBSD technique is applied to detect the alloy growth orientation and grain boundary misorientation angle of alloys by once and twice Bridgman solidification at 10 μm/s draw rate. The room temperature tensile mechanical properties of Al3CrCuFeNi2 high-entropy alloy by twice Bridgman solidification at 10 μm/s draw rate and suction casting are studied. The results show that the primary spacing of dendritic of Al3CrCuFeNi2 high-entropy alloy by Bridgman solidification at 10 μm/s draw rate is larger than other draw rates and suction casting, while the growth orientation angle of dendrite dry is smaller than others. The orientation is close to the <001> direction after twice Bridgman solidification at 10 μm/s draw rate, and most of grain boundary misorientation angle are less than 5°. Compared with suction casting samples, yield strength, tensile strength and elongation of Al3CrCuFeNi2 high-entropy alloy by using twice Bridgman solidification increased by 34.6%, 10.2% and 40%.

Key wordsAl3CrCuFeNi2 high-entropy alloy    EBSD    orientation analysis, mechanical property
收稿日期: 2013-09-02     
基金资助:

国家自然科学基金资助项目50971019

通讯作者: 张勇     E-mail: drzhangy@ustb.edu.cn
作者简介: 张素芳, 女, 1989年生, 硕士生

引用本文:

张素芳,杨潇,张勇. Al3CrCuFeNi2高熵合金单晶材料的制备及性能[J]. 金属学报, 10.3724/SP.J.1037.2013.00540.
ZHANG Sufang, YANG Xiao, ZHANG Yong. PROCESSING AND PROPERTIES OF Al3CrCuFeNi2 SINGLE CRYSTAL HIGH--ENTROPY ALLOY. Acta Metall Sin, 2013, 49(11): 1473-1480.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00540      或      https://www.ams.org.cn/CN/Y2013/V49/I11/1473

[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chen T S, Shun T T, Tsau C H, Chang S Y.Adv Eng Mater, 2004; 6: 299

[2] Yeh J W.  Ann Chim Sci Mater, 2006; 31: 633
[3] Zhang Y.  Metallic Glasses and High Entropy Alloys. Beijing: Science Press, 2010: 67
(张勇. 非晶和高熵合金. 北京: 科学出版社, 2010: 67)
[4] Yang X, Zhang Y.  Mater Chem Phys, 2012; 233: 132
[5] Lin C M, Tsai H L.  Intermetallics, 2011; 19: 288
[6] Singh S, Wanderka N, Murty B S, Glatzel U, Ban J.   Acta Mater, 2011; 59: 182
[7] Huang C, Zhang Y Z, Shen J Y, Vilar R.  Surf Coat Technol, 2011; 206: 1389
[8] Kuznetsov A V, Shaysultanov D G, Stepanov N D, Salishchev G A, Senkov O N.Mater Sci Eng, 2012; A533: 107
[9] Hemphill M A, Yuan T, Wang G Y, Yeh J W, Tsai C W, Chuang A, Liaw P K.  Acta Mater,2012; 60: 5723
[10] Tsai M H, Yeh J W, Gan J Y.  Thin Solid Films, 2008; 516: 5527
[11] Zhou Y J, Zhang Y, Wang F J, Chen G L.  Appl Phys Lett, 2008; 92: 241917
[12] Zhang Y, Zuo T T, Cheng Y Q, Liaw P K.  Sci Rep, 2013; DOI: 10.1038/srep01455
[13] Senkov O N, Wilks G B, Scott J M, Miracle D B.  Intermetallics, 2011; 19: 698
[14] Chen R Z.  J Mater Eng, 1995; (8): 3
(陈荣章. 材料工程, 1995; (8): 3)
[15] Zhang W G, Liu L, Zhao X B, Qu M, Yu Z H, Fu H Z.  Foundry, 2009; 58: 1
(张卫国, 刘林, 赵新宝, 屈敏, 余竹焕, 傅恒志. 铸造, 2009; 58: 1)
[16] Ding X F, Lin J P, Zhang L Q, Su Y Q, Chen G L.  Acta Mater, 2012; 60: 498
[17] Liu J, Li L, Zeng B, Peng G W.  J Hunan Ins Eng, 2005; 15: 49
(刘健, 李理, 曾斌, 彭广威. 湖南工程学院学报, 2005; 15: 49)
[18] Zhang Y.  Mater Sci Forum, 2010; 654--656: 1058
[19] Tung C C, Yeh W W, Shun T T, Chen S K, Huang Y S, Chen C H.  Mater Lett, 2007; 61: 1
[20] Ma S G, Zhang S F, Zhang Y, Gao M C, Liaw P K.  JOM, 2013; DOI:10.1007/s11837-013-0733-x
[21] Guo S, Ng C, Lu J, Liu C T.  J Appl Phys, 2011; 109: 103505
[22] Li S M, Du W, Zhang J, Li J S, Liu L, Fu H Z.  Acta Metall Sin, 2002; 38: 1195
(李双明, 杜炜, 张军, 李金山, 刘林, 傅恒志. 金属学报, 2002; 38: 1195)
[23] Li X F, Guo X P.  Acta Metall Sin, 2013; 49: 853
(李小飞, 郭喜平. 金属学报, 2013; 49: 853)
[24] Fu H Z, He G, Li J G.  Acta Metall Sin, 1997; 33: 1233
(傅恒志, 何国, 李建国. 金属学报, 1997; 33: 1233)
[25] Li X Y, Li P, Zhou Y Z, Jin T, Zhang Z F.  Acta Metall Sin, 2013; 49: 351
(李小阳, 李鹏, 周亦胃, 金涛, 张哲峰. 金属学报, 2013; 49: 351)
[26] Chen M, Liu Y, Li Y X, Chen X.  Acta Metall Sin, 2007; 43: 1020
(陈敏, 刘源, 李言祥, 陈祥. 金属学报, 2007; 43: 1020)
[27] Wang F J, Zhang Y, Chen G L.  J Eng Mater Technol, 2009; 131: 1
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[12] 吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.
[13] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[14] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[15] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.