Please wait a minute...
金属学报    DOI: 10.3724/SP.J.1037.2013.00541
  论文 本期目录 | 过刊浏览 |
熔体保温温度对Wf/Zr基金属玻璃复合材料室温力学性能的影响
高度,陈光,范沧
南京理工大学材料评价与设计教育部工程研究中心, 南京 210094
INFLUENCE OF MELT HOLDING TEMPERATURES ON MECHANICAL PROPERTIES AT ROOM TEMPERATURE OF Wf/Zr-BASED METALLIC GLASS COMPOSITES
GAO Du, CHEN Guang, FAN Cang
Engineering Research Center of Materials Behavior and Design,Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094
全文: PDF(1506 KB)  
摘要: 

系统研究了熔体保温温度对渗流铸造快淬法制备的Wf/Zr基金属玻璃复合材料的影响.室温力学性能测试结果表明, Wf/Zr基金属玻璃复合材料在制备过程中存在一个最佳熔体保温温度.偏离该保温温度, 复合材料的室温压缩塑性发生恶化.光学显微组织和能谱分析结果表明其原因在于, 在不同的熔体保温温度,基体内产生不同数量的各种析出相. 在最佳熔体保温温度810℃下,制备出了室温压缩塑性达到19.6%的、Wf体积分数为75%的复合材料.

关键词 金属玻璃复合材料W纤维析出相保温温度压缩塑性    
Abstract

The effect of the molten temperatures on the preparation of the Wf/Zr-based metallic glass composites by infiltration casting rapid quenching technique was well studied. The results of the mechanical properties at ambient temperature indicate that the composite has an optimum melt holding temperature in the preparation process. Lower or higher than the optimum temperature, the compressive plasticity of the composite deteriorated. The optical microstructure and EDS analyses indicate that the reason for the deterioration of the compressive plasticity was the resulted microstructures, which contains different precipitates with different molten temperatures. At the optimum preparation condition, a Wf/Zr--based metallic glass composite with 75% volume fraction of tungsten fiber was successfully produced with significantly improved compressive plasticity of 19.6%.

Key wordsmetallic glass composite    W fiber, precipitate    melt holding temperature    compression plasticity
收稿日期: 2013-09-02     
基金资助:

国家自然科学基金项目50971057和51371099资助

通讯作者: 陈光     E-mail: gchen@njust.edu.cn
作者简介: 高度, 男, 1983年生, 博士生

引用本文:

高度,陈光,范沧. 熔体保温温度对Wf/Zr基金属玻璃复合材料室温力学性能的影响[J]. 金属学报, 10.3724/SP.J.1037.2013.00541.
GAO Du, CHEN Guang, FAN Cang. INFLUENCE OF MELT HOLDING TEMPERATURES ON MECHANICAL PROPERTIES AT ROOM TEMPERATURE OF Wf/Zr-BASED METALLIC GLASS COMPOSITES. Acta Metall Sin, 2013, 49(11): 1481-1486.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00541      或      https://www.ams.org.cn/CN/Y2013/V49/I11/1481

[1] Johnson W L.  MRS Bull, 1999; 24: 42

[2] Inoue A.  Acta Mater, 2000; 48: 279
[3] Ashby M F, Greer A L.  Scr Mater, 2006; 54: 321
[4] Schuh C A, Hufnagel T C, Ramamurty U.  Acta Mater, 2007; 55: 4067
[5] Greer A L.  Mater Today, 2009; 12: 14
[6] Zhang Z F, Eckert J, Schultz L.  Acta Mater, 2003; 51: 1167
[7] Eckert J, Das J, Pauly S, Duhamel C.  J Mater Res, 2007; 22: 285
[8] Wu F F, Zhang Z F, Mao S X, Peker A, Eckert J.  Phys Rev, 2007; 75B: 134201
[9] Wang Z H, Chen G, Jiang F, Du Y L, Chen G L.  Rare Met Mater Eng, 2006; 35: 1568
(王志华, 陈光, 姜斐, 杜宇雷, 陈国良. 稀有金属材料与工程, 2006; 35: 1568)
[10] Conner R D, Dandliker R B, Johnson W L.  Acta Mater, 1998; 46: 6089
[11] Dandliker R B, Conner R D, Johnson W L.  J Mater Res, 1998; 13: 2896
[12] Kim C P, Busch R, Masuhr A, Choi--Yim H, Johnson W L.  Appl Phys Lett, 2001;79: 1456
[13] Bian Z, Pan M X, Zhang Y, Wang W H.  Appl Phys Lett, 2002; 81: 4739
[14] Qiu K Q, Wang A M, Zhang H F, Ding B Z, Hu Z H.  Intermetallics, 2002; 10: 1283
[15] Wang G, Chen D M, Shen J, Stachurski Z H, Qin Q H, Sun J F, Zhou B D.J Non-Cryst Solids, 2006; 352: 3872
[16] Wadhwa P, Heinrich J, Busch R.  J Alloys Compd, 2007; 434--435: 259
[17] Zhang H, Zhang Z F, Wang Z G, Zhang H F.  Mater Sci Eng, 2008; A483--484: 164
[18] Zhang X C, Chen X H, Zhang Y, Chen G L.  Rare Met Mater Eng, 2008; 37: 786
(张兴超, 陈晓华, 张勇, 陈国良. 稀有金属材料与工程, 2008; 37: 786)
[19] Lee K, Son C Y, Lee S B, Lee S K, Lee S.  Mater Sci Eng, 2010; A527: 941
[20] Deng S T, Diao H, Chen Y L, Yan C, Zhang H F, Wang A M, Hu Z H.  Scr Mater, 2011; 64: 85
[21] Choi-Yim H, Johnson W L.  Appl Phys Lett, 1997; 71: 3808
[22] Kato H, Inoue A.  Mater Trans JIM, 1997; 38: 793
[23] Choi-Yim H, Busch R, K\"{oster U, Johnson W L.  Acta Mater, 1999; 47: 2455
[24] Choi-Yim H, Conner R D, Szuecs F, Johnson W L.  Scr Mater, 2001; 45: 1039
[25] Choi-Yim H, Schroers J, Johnson W L.  Appl Phys Lett, 2002; 80: 1906
[26] Li H, Subhash G, Kecskes L J, Dowing R J.  Mater Sci Eng, 2005; A403: 134
[27] Chen G, Bei H, Cao Y, Gali A, Liu C T, George E P.  Appl Phys Lett, 2009; 95: 081908
[28] Cheng J L, Chen G, Xu F, Du Y L, Li Y S, Liu C T.  Intermetallics, 2010; 18: 2425
[29] Hays C C, Kim C P, Johnson W L.  Phys Rev Lett, 2000; 84: 2901
[30] Szuecs F, Kim C P, Johnson W L.  Acta Mater, 2001; 49: 1507
[31] Sun G Y, Chen G, Liu C T, Chen G L.  Scr Mater, 2006; 55: 375
[32] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L.  Nature, 2008; 451: 1085
[33] Fan C, Li C F, Inoue A, Haas V.  Phys Rev, 2000; 61B: R3761
[34] Leonhard A, Xing L Q, Heilmaier M, Gebert A, Eckert J, Schultz L.Nanostruct Mater, 1998; 10: 805
[35] Stawovy M T, Aning A O.  Mater Sci Eng, 1998; A256: 138
[36] Lee M H, Kim J--H, Park J S, Kim J C, Kim W T, Kim D H.  Scr Mater, 2004; 50: 1367
[37] Yu P, Kim K B, Das J, Baier F, Xu W, Eckert J.  Scr Mater, 2006; 54: 1445
[38] Zhang Z H, Han B Q, Witkin D, Ajdelsztajn L, Laverna E J.  Scr Mater, 2006; 54: 869
[39] Conner R D, Dandliker R B, Scruggs V, Johnson W L.  Int J Impact Eng, 2000; 24: 435
[40] Zhou X, Kou H C, Wang J, Li J S, Zhou L.  Intermetallics, 2012; 28: 45
[41] Fan C, Liu C T, Chen G, Chen D, Yang X, Liaw P K, Yan H G.  Intermetallics, 2013; 38: 19
[42] Schroers J, Busch R, Masuhr A, Johnson W L.  Appl Phys Lett, 1999; 74: 2806
[43] Dandliker R B.  PhD Dissertation, California Institute of Technology, Pasadena, 1998
[44] Qiu K Q, Wang A M, Zhang H F, Qiao D C, Ding B Z, Hu Z H.  Acta Metall Sin, 2002; 38: 1091
(邱克强, 王爱民, 张海峰, 乔东春, 丁炳哲, 胡壮麒.金属学报, 2002; 38: 1091)
[45] Qiu K Q.  PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2002
(邱克强. 中国科学院金属研究所博士学位论文, 沈阳, 2002)
[46] Zhang H, Zhang Z F, Wang Z G, Qiu K Q, Zhang H F, Zang Q S, Hu Z Q.  Mater Sci Eng, 2006; A418: 146
[47] Wang M L, Chen G L, Hui X, Zhang Y, Bai Z Y.  Intermetallics, 2007; 15: 1309
[48] Wang M L, Hui X D, Kou H C, Chen G L.  Rare Met Mater Eng, 2005; 34: 1102
(王美玲, 惠希东, 寇宏超, 陈国良. 稀有金属材料与工程, 2005; 34: 1102)
[1] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[2] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[3] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[4] 杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
[5] 朱上,李志辉,闫丽珍,李锡武,张永安,熊柏青. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响[J]. 金属学报, 2019, 55(11): 1395-1406.
[6] 马国楠, 王东, 刘振宇, 毕胜, 昝宇宁, 肖伯律, 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
[7] 赵燕春, 孙浩, 李春玲, 蒋建龙, 毛瑞鹏, 寇生中, 李春燕. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为[J]. 金属学报, 2018, 54(12): 1818-1824.
[8] 胡国栋, 王培, 李殿中, 李依依. 新型25Cr-20Ni奥氏体耐热不锈钢750 ℃持久实验过程中析出相演变[J]. 金属学报, 2018, 54(11): 1705-1714.
[9] 张可, 李昭东, 隋凤利, 朱正海, 章小峰, 孙新军, 黄贞益, 雍岐龙. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38.
[10] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[11] 胡小锋,杜瑜宾,闫德胜,戎利建. Cu的析出及其对FeCrMoCu合金阻尼性能和力学性能的影响[J]. 金属学报, 2017, 53(5): 601-608.
[12] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[13] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[14] 杨永,王昭东,李天瑞,贾涛,李小琳,王国栋. 一种第二相析出-温度-时间曲线计算模型的建立[J]. 金属学报, 2017, 53(1): 123-128.
[15] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.