Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1374-1380    DOI: 10.3724/SP.J.1037.2013.00398
  论文 本期目录 | 过刊浏览 |
生长速度对定向凝固Ti-46Al-2Cr-2Nb合金领先相及微观组织的影响
张元,刘国怀,李新中,陈瑞润,苏彦庆,郭景杰,傅恒志
哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
EFFECTS OF GROWTH RATE ON PRIMARY PHASE AND MICROSTRUCTURES OF DIRECTIONALLY SOLIDIFIED Ti-46Al-2Cr-2Nb ALLOY
ZHANG Yuan, LIU Guohuai, LI Xinzhong, CHEN Ruirun, SU Yanqing, GUO Jingjie, FU Hengzhi
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
引用本文:

张元,刘国怀,李新中,陈瑞润,苏彦庆,郭景杰,傅恒志. 生长速度对定向凝固Ti-46Al-2Cr-2Nb合金领先相及微观组织的影响[J]. 金属学报, 2013, 49(11): 1374-1380.
ZHANG Yuan, LIU Guohuai, LI Xinzhong, CHEN Ruirun, SU Yanqing, GUO Jingjie, FU Hengzhi. EFFECTS OF GROWTH RATE ON PRIMARY PHASE AND MICROSTRUCTURES OF DIRECTIONALLY SOLIDIFIED Ti-46Al-2Cr-2Nb ALLOY[J]. Acta Metall Sin, 2013, 49(11): 1374-1380.

全文: PDF(1592 KB)  
摘要: 

采用Birdgman定向凝固系统, 在恒定的温度梯度和宽的生长速度范围(v=10-120μm/s),Ti-46Al-2Cr-2Nb合金进行了定向凝固实验, 并对合金的领先相类型、一次枝晶间距(λ1)、二次枝晶间距(λ2)和片层间距(λe)进行分析.结果表明, 随着生长速度的增加, 试样的领先相由β相转变为α;通过计算领先相界面温度, 发现基于最高界面温度判据的相选择模型能对Ti-46Al-2Cr-2Nb合金领先相随生长速度v的转变趋势进行预测;λ1v的变化规律受领先相转变影响不大, 满足λ1=700.6v-0.24关系;但λ2v的变化规律受领先相转变影响较大, 当领先相为βα,分别满足λ2=44.0v-0.10和λ2=57.3v-0.23关系;λev之间满足λe=16.4v-0.76关系, 不受领先相转变的影响. 与TiAl二元合金相比,提高生长速度更有利于Ti-46Al-2Cr-2Nb合金片层细化.

关键词 TiAl合金定向凝固领先相微观组织    
Abstract

TiAl alloys with fully lamellar structure has been intensively studied for excellent fracture toughness and creep properties. Directional solidification is an effective way to control the lamellar structure. Thus it is important to investigate the effect of solidification parameters on the structure of TiAl alloys during directional solidification. In this work, microstructures of directionally solidifiedTi-46Al-2Cr-2Nb (atomic fraction, %) alloy has been investigated throughBridgman-type directional solidification experiment at constant temperaturegradient and wide range of growth rates (v=10-120 μm/s). The type of primary phase,the primary dendritic arm spacing (λ1), the secondary dendritic arm spacing (λ2) and the lamellar spacing (λe) are investigated. It is found that: the primary phase of the specimenstransformed from β phase to α phase with the increase of growth rates; the transformation trend of primary phases with growth rates can be predicted by the phase selection model based on the highest interface temperature criterion. λ1, λ2, andλe all decrease with the increasing of v. The relationship between λ1 and v is not affected by the transformation of primary phases, which follows λ1=700.6v-0.24 relationship. However the relationship between λ2 and v is associated with the type of primary phases, λ2 and v followsλ2=44.0v-0.10 relationship when β is the primary phases, while follows λ2=57.3v-0.23 relationship when the primary phase has transformed to α phase. The relationship between λe and v can be expressed by λe=16.4v-0.76.Compared with TiAl binary alloys, lamellar spacing is more effectively refined by increasing the growth rates in Ti-46Al-2Cr-2Nb alloy.

Key wordsTiAl alloy    directional solidification    primary phase    microstructure
收稿日期: 2013-07-10     
基金资助:

国家自然科学基金项目51071062, 51274077 和51271068, 国家重点基础研究发展计划项目2011CB605504及中央高校基本科研业务费专项资金项目HIT.NSRIF.2013002资助

作者简介: 张元, 男, 1986年生, 博士生

[1] Yamaguchi M, Johnson D R, Lee H N, Inui H.  Intermetallics, 2000; 8: 511

[2] Kim S E, Lee Y T, Oh M H, Inui H, Yamaguchi M.  Intermetallics, 2000; 8: 399
[3] Zollinger J, Lapin J, Daloz D, Combeau H.  Intermetallics, 2007; 15: 1343
[4] Chen G L, Lin J P.  Physical Metallugry for Ordered Intermetallics. Beijing: Metallurgical Industry Press, 1999: 183
(陈国良, 林均品. 有序金属间化合物结构材料物理金属学基础. 北京: 冶金工业出版社, 1999: 183)
[5] Johnson D R.  Acta Mater, 1997; 45: 2523
[6] Johnson D R, Inui H, Muto S, Omiya Y, Yamanaka T.  Acta Mater, 2006; 54: 1077
[7] Xiao Z X.  PhD Dissertation, Beihang University, 2011
(肖志霞. 北京航空航天大学博士学位论文, 2011)
[8] Xiao Z X, Zheng L J, Yang L L, Yan J, Zhang H.  Acta Metall Sin, 2010; 10: 1223
(肖志霞, 郑立静, 杨莉莉, 闫洁, 张虎. 金属学报, 2010; 10: 1223)
[9] Fan J L, Li X Z, Su Y Q, Chen R R, Guo J J, Fu H Z.  J Cryst Growth, 2011; 337: 52
[10] Fan J L, Li X Z, Su Y Q, Chen R R, Guo J J, Fu H Z.  Appl Phys, 2011; 105A: 239
[11] Li X Z, Sun T, Yu C X, Su Y Q, Cao Y Z, Guo J J, Fu H Z.  Acta Metall Sin, 2009; 45: 1479
(李新中, 孙涛, 于彩霞, 苏彦庆, 曹勇智, 郭景杰, 傅恒志. 金属学报, 2009; 45: 1479)
[12] Thomas M, Bacos M T.  High Temp Mater, 2011; 3: 7
[13] Nie G.  PhD Dissertation, Harbin Institute of Technology, 2012
(聂革. 哈尔滨工业大学博士学位论文, 2012)
[14] Kim M C, Oh M H, Lee J H, Inui H, Yamaguchi M, Wee D M.  Mater Sci Eng, 1997; A239-240: 570
[15] Su Y Q, Liu C, Li X Z, Guo J J, Li B S, Jia J, Fu H Z.  Intermetallics, 2005; 13: 267
[16] Hunt J D. In: Argent B B ed.,  International Conference on Solidification and Casting of Metals. London: The Metals Society, 1979: 3
[17] Kurz W, Fisher D J.  Acta Mater, 1981; 29: 11
[18] Trivedi R.  Metall Mater Trans, 1984; 15A: 977
[19] Fan J L, Li X Z, Su Y Q, Chen R R, Guo J J, Fu H Z.  Mater Chem Phys, 2011; 130: 1232
[20] Fan J L.  PhD Dissertation, Harbin Institute of Technology, 2012
(樊江磊. 哈尔滨工业大学博士学位论文, 2012)
[21] Fan J L, Li X Z, Su Y Q, Guo J J, Fu H Z.  Mater Des, 2012; 34: 552
[22] Liu C.  PhD Dissertation, Harbin Institute of Technology, 2007
(刘畅. 哈尔滨工业大学博士学位论文, 2007)
[23] Zheng Y B, Li S M, Li Z X, Zhu P C, Fu H Z.  J Aeronaut Mater, 2009; 29: 12
(郑元斌, 李双明, 李臻熙, 朱鹏超, 傅恒志. 航空材料学报, 2009; 29: 12
[24] Muto S, Yamanaka T, Lee H N, Johnson D R, Inui H, Yamaguchi M.  Adv Eng Mater, 2001; 3: 391
[25] Johnson D R, Inui H, Yamaguchi M.  Intermetallics, 1998; 6: 647
[26] Spinelli J E, Rosa D M, Ferreira I L, Garcia A.  Mater Sci Eng, 2004; A383: 271
[27] Appel F, Paul J D H, Oehring M.  Gamma Titanium Aluminide Alloys: Science and Technology. Weinheim: Wiley, 2011: 33
[28] Trivedi R, Kurz W.  Solidification Processing of Eutectic Alloys.Pennsylvania: Metallurgical Society, 1988: 3
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[4] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[5] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[6] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[7] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[8] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[9] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[10] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[11] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[12] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[13] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[14] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[15] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.